
NLP Complete Notes – Tauqueer Alam 

UNIT - 1 

Computing with Language: Texts and Words 

This is one of the first chapters when learning NLP using Python (especially with 

NLTK). 

It focuses on how computers handle text, and how we can analyze language data 

computationally. 

Let’s break it down  

What It Means 

―Computing with Language‖ means using Python programs to: 

 Process large collections of text (called corpora), 

 Count and search words, 

 Analyze word patterns and frequencies, 

 Understand structure and meaning in human language. 

So the goal is to use Python to treat language as data and do useful computations on it. 

 

Common NLP Tasks Here 
 

Task Description Example 

Tokenization Splitting text into words or sentences 
"Hello world!" → ["Hello", 

"world", "!"] 

Counting 

Words 
Finding frequency of each word 

Count how many times ―Python‖ 

appears 

Concordance 
Find occurrences of a word and its 

surrounding words 

Find all places where ―science‖ 

occurs in a text 

Collocation Commonly occurring word pairs ―Machine learning‖, ―New York‖ 

Dispersion Plot 
Shows where words appear in the  

text 

Plot ―freedom‖ and ―war‖ in a 

novel 

 



A Closer Look at Python: Texts as Lists of Words 

Once you have text data, you need to represent and manipulate it. 

In Python, text can be treated as: 

 Strings (continuous sequences of characters), or 

 Lists of words (tokens). 

 

 Texts as Lists 

If you split a text into words using split() or NLTK’s tokenizer, you get a list: 

 

 

Now you can use Python list operations: 

 

 

Why Treat Text as a List? 

Because: 

 You can loop, count, slice, and search words easily. 

 It helps in feature extraction, frequency distribution, and pattern matching. 



Example: Word Frequency 
 

 

This tells you which words appear most frequently — very useful in text analysis. 

Common Python List Operations for NLP 

Operation Example Result 

Indexing words[1] 2nd word 

Slicing words[1:3] subset of words 

Membership 'Python' in words True 

Concatenation words + ['rocks!'] add new words 

Iteration for w in words: loop through text 

Example Combined 

 



Computing with Language: Simple Statistics 

This topic introduces basic statistical analysis on text data — one of the most important 

foundations for NLP and Data Science. 

What It Means 

You learn how to use mathematics and statistics to extract useful information from 

language — like word frequency, richness of vocabulary, or word distributions. 

It’s about quantifying how language behaves. 

Common Statistical Measures in NLP 

Concept Description Example 

Frequency Distribution 

(FDist) 
How often each word appears ―Python‖ appears 50 times 

Lexical Diversity 
Ratio of unique words to total 

words 

len(set(words)) / 

len(words) 

Word Length 

Distribution 

Average or histogram of word 

lengths 
Mean word length = 5.2 

Conditional Frequency 
Frequency of words under 

certain conditions 

How often "news" occurs 

after ―fake‖ 

Example in Python (Using NLTK 

 



OUTPUT 

 

 

Why Important? 

Simple statistics give us: 

 Insights about text structure (how repetitive or rich it is) 

 Data for feature engineering in ML models 

 Basis for topic modeling or document comparison 

 

Back to Python: Making Decisions and Taking Control 

Now we switch back to Python concepts that help control program flow — essential for 

building NLP pipelines that make decisions automatically. 

What It Means 

Here you learn how to use: 

 Conditional statements (if, elif, else) 

 Loops (for, while) 

 Functions (def) 

 Comprehensions (like [w for w in words if len(w) > 5]) 

These let your program make decisions, filter data, and react to text patterns 

dynamically. 

 

 

 



Example 1 — Using Conditions 

 

Output: Ends with 'on' 

 

Example 2 — Using Loops in Text Processing 

 

 

OUTPUT: 

learning 

Natural 

Language 

Processing 



Why Important? 

Because NLP programs need to: 

 Filter specific kinds of words (e.g., nouns, verbs, stopwords) 

 Handle multiple conditions (e.g., if token is alphabetic, not numeric) 

 Control flow (e.g., skip punctuation, lowercase all words, etc.) 

So this part ensures you can control text analysis intelligently. 

 

Automatic Natural Language Understanding 

This is where we shift from counting and manipulating words → to understanding 

meaning. 

It introduces the goal of NLP — enabling computers to understand and respond to 

human language automatically. 

What It Means 

Automatic Natural Language Understanding (NLU) is the ability of a computer to: 

 Interpret human language (text or speech) 

 Extract meaning (semantics, intent, entities) 

 Generate responses intelligently 

 

Subfields Involved 

Area Description Example 

Tokenization 
Breaking text into 

words/sentences 

―I love NLP‖ → [―I‖, ―love‖, 

―NLP‖] 

POS Tagging Identifying part of speech ―love‖ → verb 

Named Entity Recognition 

(NER) 

Identifying names, places, 

dates 
―Elon Musk‖ → PERSON 

Parsing Analyzing sentence structure Grammar trees 

Semantic Analysis Understanding meaning of ―bank‖ → riverbank or 



Area Description Example 

text financial bank 

Sentiment Analysis Detecting opinion or emotion ―good‖ → positive 

Coreference Resolution Linking pronouns to nouns ―He‖ → ―John‖ 

Machine Translation Converting languages English → Hindi 

 

Example Using NLTK 

 

 

 

 

 

 

 



OUTPUT 

 

 

Why Important? 

Because NLU is what enables: 

 Chatbots (like Siri, Alexa, ChatGPT �) 

 Sentiment analysis 

 Search engines 

 Translation systems 

 Question-answering bots 

 Voice assistants 

It’s the “intelligent” side of NLP. 

 

Accessing Text Corpora 

What Is a Corpus? 

A corpus (plural: corpora) is a large collection of text — like books, news articles, 

tweets, or speech transcripts — used for language research and NLP model training. 

In NLP, corpora are used to: 



 Analyze language structure 

 Train models (for tagging, translation, sentiment, etc.) 

 Study word usage and frequency 

Accessing Corpora in NLTK 

NLTK provides many built-in corpora. 

 

Example: Reading Text 

 

 

OUTPUT 

 

 

 



Corpus Operations 

 

Operation         Description Example 

.words()  Returns list of all words 
gutenberg.words('austen-

emma.txt') 

.sents() 
Returns list of sentences (each 

sentence = list of words) 
brown.sents(categories='news') 

.raw() Returns entire text as one string 
gutenberg.raw('austen-

emma.txt') 

Why Important? 

Accessing corpora lets you: 

 Work with real-world text 

 Compute statistics (word count, frequency, diversity) 

 Train and evaluate models on large text data 

What is a Conditional Frequency Distribution? 

A Conditional Frequency Distribution (CFD) in NLP is used to find how often 

something happens under certain conditions. 

Think of it like: 

―How many times does a word appear in a specific category (condition)?‖ 

 

Example to Understand 

Imagine you have two categories (conditions): 

 News 

 Romance 

Each category has words (data). 

 



Category Words 

News 
"war", "president",   "election", 

"war", "budget" 

Romance 
"love", "kiss", "love", "heart", 

"beautiful" 

Now you want to know: 

 How many times the word ―love‖ appears in romance? 

 How many times the word ―war‖ appears in news? 

 

Example in Python (Using NLTK) 

 



OUTPUT 

 

 

 

Why Useful? 

It helps analyze word usage patterns: 

 Compare words across genres or time periods 

 Understand context-based frequency 

 Build features for text classification 

 

Lexical Resources 

What Are Lexical Resources? 

These are structured databases of words — collections that tell you: 

 Meanings 

 Synonyms / antonyms 

 Parts of speech 

 Example usage 

Examples include: 

 WordNet (most popular in NLP) 

 Stopwords lists 

 Pronunciation dictionaries 

 Sentiment lexicons 

 

 



Example: Stopwords 

Stopwords are common words like is, the, a, in — usually removed before analysis. 

 

OUTPUT 

['i', 'me', 'my', 'myself', 'we', 'our', 'ours', 'ourselves', 'you', "you're"] 

Why Important? 

Lexical resources give semantic and linguistic structure — essential for: 

 Lemmatization (getting word roots) 

 Synonym/antonym detection 

 Sentiment or tone detection 

 Building knowledge-based systems 

 

WordNet 

What Is WordNet? 

WordNet is a large lexical database of English. 

It groups English words into synsets (sets of synonyms) and records relationships 

between them — like: 

 Synonyms 

 Antonyms 

 Hypernyms (is-a) 

 Hyponyms (sub-type) 

 Meronyms (part-of) 

 

 



Why WordNet Is Important 

WordNet is crucial in NLP for: 

 Semantic analysis (understanding meaning) 

 Text classification using word relations 

 Word sense disambiguation 

 Question answering and summarization 

 Knowledge graphs and ontology-based AI 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



UNIT – 2 

Processing Raw Text – Accessing Text from the Web and 

from Disk 

This topic teaches how to get raw text data (like articles, books, or tweets) into Python 

for NLP tasks. 

Before we analyze or clean text, we must access (load) it — either from the internet 

(web) or from our computer (disk) 

Accessing Text from the Web 

In NLP, we often need text from online sources — like web pages, blogs, or Wikipedia 

articles. 

Common Ways to Access Text from the Web 

(a) Using urllib (Built-in Python Library) 

urllib lets us open URLs and read the text (HTML content) of web pages. 

 

Explanation: 

 urlopen() → opens the web page 

 read() → reads the content 

 decode('utf8') → converts it into a readable string 

 

 



(b) Using requests library (simpler & modern) 

 

requests is easier and cleaner than urllib. 

 

(c) Removing HTML Tags (if web page has HTML) 

Web pages often contain tags like <p> or <div>. 

We can remove them using BeautifulSoup (a web-scraping library). 

 

Now you have pure text (no HTML) 

 

 

 

 



Accessing Text from Disk (Local Files) 

If the text is already stored on your computer (like .txt, .csv, .docx), you can read it 

easily in Python. 

 

(a) Reading a Text File 

 

r" means read mode. 

Always close the file after reading. 

 

(b) Using with (Recommended) 

 

Automatically closes file — safer and cleaner. 

 

(c) Reading Multiple Files 

If you have many text files in a folder: 



 

 

Processing the Text 

After loading text (from web or disk), you usually want to: 

1. Tokenize → split text into words or sentences 

2. Normalize → lowercase, remove punctuation, etc. 

Example: 

 

 

Strings — Text Processing at the Lowest Level 

In NLP, everything starts with text, and in Python, text = string. 

Before we use advanced tools (like NLTK tokenizers), we should understand how 

strings work, because they are the lowest-level representation of text in Python. 

 



What is a String? 

A string is a sequence of characters — letters, numbers, symbols, or spaces — enclosed 

in quotes. 

 

 

Accessing Characters in a String 

You can access any character by its index number (just like list indexing). 

 Indexing starts from 0. 

 

 

String Slicing 

You can extract parts of strings using slice notation [start:end]. 

 

 

 



String Operations 

Python provides many useful string operations for text processing: 

Operation Description Example 

+ Concatenate strings "Hello " + "World" → "Hello World" 

* Repeat string "Hi!" * 3 → "Hi!Hi!Hi!" 

len() Find length len("Python") → 6 

in Check substring "Lang" in "Language" → True 

String Methods for Text Cleaning 

Method Function Example Output 

lower() Convert to lowercase "PYTHON".lower() python 

upper() Convert to uppercase "python".upper() PYTHON 

title() Capitalize each word "hello world".title() Hello World 

strip() Remove spaces " text ".strip() text 

replace() Replace substring 
"AI is cool".replace("cool", 

"fun") 
AI is fun 

split() 
Split string into 

words 
"AI with Python".split() 

['AI', 'with', 

'Python'] 

join() Join list into string 
" ".join(['AI', 'with', 

'Python']) 
AI with Python 

Checking String Content 

Function Purpose Example Output 

isalpha() Checks if all characters are letters "Hello".isalpha() True 

isdigit() Checks if all characters are digits "123".isdigit() True 

isalnum() Checks if alphanumeric "AI123".isalnum() True 

isspace() Checks if only spaces " ".isspace() True 

 



Example: Basic Text Preprocessing Using Strings 

 

OUTPUT 

['natural', 'language', 'processing', 'or', 'nlp', 'is', 'amazing'] 

 

Text Processing with Unicode 

When working with Natural Language Processing (NLP), we often deal with many 

languages, symbols, and special characters. 

To process all of them correctly, Python uses a system called Unicode — a universal way 

to represent text from every language. 

What is Unicode? 

 Unicode is a standard that assigns a unique number (called a code point) to every 

character in every language. 

 It solves the problem of earlier encodings (like ASCII) that could only handle 

English letters. 

Character Unicode Code Point Description 

A U+0041 English Capital A 

a U+0061 English Small a 

अ U+0905 Hindi Letter A 

中 U+4E2D Chinese Character 

� U+1F600 Emoji: Grinning Face 



Every symbol has its own unique code — making it possible to mix 

languages safely in the same file. 

 

Encoding and Decoding 

Encoding = converting text → bytes 

Decoding = converting bytes → text 

This is important when reading/writing files or transferring text across the web. 

 

 

OUTPUT 

 

'utf-8' is the most common encoding — supports all languages. 

 

Regular Expressions for Detecting Word Patterns 

1. Introduction 

 Regular expressions (also called regex) are powerful tools used to find, match, 

and manipulate text patterns in strings. 



 In NLP, they are often used for tokenization, pattern matching, cleaning text, 

and information extraction (like finding emails, phone numbers, dates, etc.). 

Example: 

If you want to find all words starting with a capital letter in a paragraph, you can do it 

easily using a regular expression 

Importing Regex Module in Python 

Python provides the re module to work with regular expressions. 

 

 

Basic Regex Functions 

Function Description 

re.match() Checks if the pattern matches at the beginning of the string 

re.search() Searches for the first occurrence of the pattern 

re.findall() Returns all occurrences of the pattern 

re.sub() Replaces text that matches the pattern 

re.split() Splits a string using the pattern as delimiter 

Common Regex Symbols 

Symbol      Meaning Example Matches 

. Any character except newline h.t ―hat‖, ―hit‖, ―hot‖ 

^ Start of string ^Hello Matches if string starts with "Hello" 

$ End of string world$ Matches if string ends with "world" 

\d Any digit (0–9) \d+ "123", "56" 

\w Any word character (a–z, A–Z, 0–9, _) \w+ "hello", "Python3" 

\s Any whitespace \s+ space, tab, newline 

* 0 or more repetitions ab* "a", "ab", "abb", "abbb" 

+ 1 or more repetitions ab+ "ab", "abb" 

? 0 or 1 occurrence colou?r "color", "colour" 



Symbol      Meaning Example Matches 

[] Set of characters [aeiou] matches vowels 

{m,n} Between m and n repetitions \d{2,4} "12", "2024" 

` ` OR condition `cat 

 

Example 1: Find All Words Starting with Capital Letter 

 

OUTPUT 

 

 

Example 2: Extract All Email Addresses 

 

OUTPUT 

 

 



Useful Applications of Regular Expressions 

(a) Tokenization 

Splitting sentences or paragraphs into words or tokens. 

(b) Removing Unwanted Characters 

Cleaning text by removing punctuation, special characters, or numbers. 

(c) Extracting Email Addresses 

Finding and collecting all emails from a large text (useful for scraping or contact 

extraction). 

(d) Extracting Phone Numbers 

Finding phone numbers in documents or web pages. 

(e) Extracting Dates 

Detecting date formats like 12/10/2025 or 2025-10-12. 

(f) Detecting Capitalized Words (e.g., Names, Locations) 

Useful in Named Entity Recognition (NER) or for extracting proper nouns. 

(g) Removing Extra Spaces 

Cleaning messy text with multiple spaces or tabs. 

(h) Extracting Hashtags or Mentions (for Social Media Data) 

Very useful in NLP when analyzing tweets or Instagram captions. 

 

 

 



 

Normalizing Text 

1. Introduction 

In Natural Language Processing (NLP), text normalization means converting text into a 

standard or uniform format so that it can be easily processed by algorithms. 

Human language is very inconsistent — we write the same thing in different ways: 

 ―U‖ and ―you‖ mean the same. 

 ―Running‖, ―runs‖, and ―ran‖ are forms of ―run‖. 

 ―I’m‖ and ―I am‖ are equivalent. 

To make text consistent, we perform normalization before feeding it to any NLP model. 

Why Normalization is Important 

Because: 

 It reduces variations in words that mean the same thing. 

 It improves accuracy of NLP models. 

 It makes text clean, consistent, and comparable. 

Example: 

Without normalization: 
["Running", "runs", "Ran"] 

After normalization: 
["run", "run", "run"] 

Common Text Normalization Techniques 

(a) Lowercasing 

Convert all characters to lowercase to avoid duplication. 

 



OUTPUT 

 

(b) Removing Punctuation and Special Characters 

Punctuation marks are usually not meaningful for NLP tasks. 

 

OUTPUT 

 

(c) Removing Stopwords 

Stopwords are common words like ―is‖, ―the‖, ―a‖, ―an‖, etc., which do not add meaning. 

 

OUTPUT 

 



(d) Stemming 

Stemming reduces words to their root form (not necessarily a real word). 

Example: 

―Playing‖, ―played‖, ―plays‖ → ―play‖ 

(e) Lemmatization 

Lemmatization also reduces words to their base form (lemma), but it uses vocabulary 

and grammar for more accuracy. 

Example: 

―Better‖ → ―good‖ (correct lemma) 

―Was‖ → ―be‖ 

(f) Expanding Contractions 

Converting shortened words to their full form: 

 ―I’m‖ → ―I am‖ 

 ―don’t‖ → ―do not‖ 

 

Combined Example 

Let’s apply multiple normalization steps together  



 

OUTPUT 

 

 

Regular Expressions for Tokenizing Text 

1. Introduction 

Tokenization is the process of splitting text into smaller units — usually words, 

sentences, or phrases. 

Regular expressions (regex) help define patterns that tell the computer where to split 

the text. 

In simple terms: 

Tokenization = breaking text into tokens (words or sentences) using rules or patterns. 

 

Why Use Regular Expressions for Tokenization? 



Regular expressions give more control and flexibility compared to simple splitting (like 

split() in Python). 

 split() just divides on spaces. 

 But regex can handle punctuation, numbers, contractions, etc. 

 It’s especially useful for complex text like social media data, reviews, or web 

content. 

 

Simple Word Tokenization Using Regex 

Let’s split a sentence into words using a simple regex pattern. 

 

 

OUTPUT 

 

\b\w+\b means: 

 \b → word boundary 

 \w+ → one or more word characters (letters, digits, underscore) 

 

 

 

 



Segmentation in NLP 

1. Introduction 

In Natural Language Processing (NLP), segmentation refers to the process of dividing 

text into meaningful units, like: 

 Sentences → Sentence Segmentation (or Sentence Boundary Detection) 

 Words → Word Segmentation 

Segmentation is an important preprocessing step because many NLP tasks (like 

tokenization, parsing, and machine translation) require text to be in smaller, meaningful 

units. 

 

Types of Segmentation 

(a) Sentence Segmentation 

Dividing text into sentences. 

Challenges: 

 Punctuation ambiguity (e.g., Dr. Smith is here. → Dr. is not the end of a 

sentence) 

 Abbreviations, decimal points, URLs 

Example using regex: 

 

 

 



 

OUTPUT 

 

Explanation: 

 (?<=[.!?])\s+ → split at spaces after a period, exclamation, or question mark. 

 

Example using NLTK: 

 

OUTPUT 

 

 

(b) Word Segmentation 

Dividing a sentence into words (or tokens). 

Example using regex: 



 

OUTPUT 

 

 

Example using NLTK: 

 

OUTPUT 

 

Notice that word_tokenize keeps punctuation as separate tokens. 

 

Special Cases in Segmentation 

1. Languages without spaces 
o Example: Chinese, Japanese 

o Words are not separated by spaces, so word segmentation requires 

dictionary-based or statistical methods. 

2. URLs, Emails, Hashtags, Emojis 
o These require custom tokenization rules to avoid splitting in the middle. 

3. Abbreviations 

o Example: U.S.A. → shouldn’t split at every period. 



Why Segmentation is Important 

 It allows accurate tokenization 

 It’s crucial for POS tagging, parsing, and translation 

 Helps in information retrieval and text analytics 

 

Formatting: From Lists to Strings in NLP 

1. Introduction 

In NLP, after tokenizing text, we often have lists of words or tokens. 

Sometimes, we need to convert these lists back into readable text for output, display, 

or further processing. This process is called formatting lists into strings. 

 

Why It‘s Useful 

 Joining tokenized words back into sentences. 

 Preparing text for storage, display, or machine learning models. 

 Combining outputs from preprocessing steps like tokenization, stemming, or 

lemmatization. 

 

Converting Lists to Strings Using join() 

The most common way in Python is using the join() method. 

 

 

 

 



OUTPUT 

 

' '.join(words) joins the words with a space between them. 

 

Joining with Other Separators 

You can use commas, hyphens, or other characters instead of spaces. 

 

OUTPUT 

 

 

Handling Punctuation Properly 

Sometimes tokenization separates punctuation from words. 

We may want to join them without extra spaces. 

 

 

OUTPUT 

Hello, world! 



From Nested Lists to Strings 

Sometimes, text may be in nested lists, like paragraphs of tokenized sentences. 

 

OUTPUT 

 

 

Categorizing and Tagging Words 

In Natural Language Processing (NLP), categorizing and tagging words means 

assigning a grammatical or semantic label to each word in a sentence. 

This helps the computer understand the role each word plays — whether it’s a noun, 

verb, adjective, etc. 

 This process is called Part-of-Speech (POS) Tagging. 

Why Is Tagging Important? 

Tagging is used in many NLP applications such as: 

 Text classification 

 Named Entity Recognition (NER) 

 Machine translation 

 Speech recognition 

 Question answering 

It allows the computer to ―understand‖ how words are functioning in a sentence. 

 



Example: 

Sentence: “The cat sat on the mat.” 

Tags: 

 The → Determiner (DT) 

 cat → Noun (NN) 

 sat → Verb (VBD) 

 on → Preposition (IN) 

 the → Determiner (DT) 

 mat → Noun (NN) 

 

What Is a Tagger? 
 A Tagger is an NLP tool or algorithm that automatically assigns tags to words 

based on their context and grammar. 

 It takes a sentence as input and returns a list of (word, tag) pairs as output. 

 

Types of Taggers 

(a) Rule-Based Taggers 

 Use handwritten grammatical rules to assign tags. 

 Example: If a word ends with ―-ed,‖ it is likely a past tense verb (VBD). 

 Example tool: ENGCG (English Constraint Grammar) 

 

(b) Stochastic Taggers (Statistical Taggers) 

 Use probability and statistics based on a trained corpus. 

 Example methods: 

o Hidden Markov Model (HMM) Tagger 

o N-gram Tagger 

These taggers predict the most likely tag based on the previous tags and word 

frequencies. 

 



(c) Transformation-Based Taggers 

 Also known as Brill Tagger. 

 Starts with simple tagging (e.g., most frequent tag) and learns transformation 

rules to improve accuracy based on errors. 

 

(d) Neural Network Taggers 

 Use Deep Learning models (e.g., BiLSTM, CRF, Transformers). 

 These capture contextual meaning of words more accurately. 

 Example: BERT, spaCy, or NLTK‘s neural taggers. 

 

Example Using NLTK (Python) 

Here’s how tagging works programmatically 

 

 

OUTPUT 

 



Each pair (word, tag) shows the category assigned by the tagger. 

 

Common POS Tags (Penn Treebank Tagset) 

Tag Meaning Example 

NN Noun (singular) book 

NNS Noun (plural) books 

VB Verb (base form) eat 

VBD Verb (past tense) ate 

JJ Adjective beautiful 

RB Adverb quickly 

PRP Pronoun he, she 

IN Preposition on, at 

DT Determiner the, a 

 

Tagged Corpora (Definition) 

A Tagged Corpus (plural: Corpora) is a collection of text where each word is 

annotated (tagged) with its part of speech (POS) or other linguistic information. 

In simple words: 
A tagged corpus = Text + Tags 

Example 

Word Tag 

The DT 

cat NN 

sat VBD 

on IN 

the DT 

mat NN 

 



 

Purpose of Tagged Corpora 

Tagged corpora are used to: 

1. Train POS Taggers — taggers learn patterns of how words and tags co-occur. 

2. Evaluate NLP models — used as a benchmark to check tagging accuracy. 

3. Linguistic analysis — to study grammar, syntax, and word usage in real 

language. 

 

Types of Tagged Corpora 

1. Part-of-Speech (POS) Tagged Corpora 

Each word is tagged with its grammatical category. 

Example (NLTK Brown Corpus): 

"The/DT cat/NN sat/VBD on/IN the/DT mat/NN ./." 

 

2. Morphologically Tagged Corpora 

Each word is tagged with morphological features, such as: 

 Tense (past/present) 

 Number (singular/plural) 

 Gender (masculine/feminine) 

Example: 

―sat‖ → Verb, Past Tense 

―cats‖ → Noun, Plural 

 

 



3. Syntactically Tagged Corpora (Parsed Corpora) 

 Contain phrase structure or dependency structure information. 

 Used for parsing and grammar learning. 

Example (Parse tree): 

 

 

4. Semantically Tagged Corpora 

 Words are tagged with semantic roles or meanings (like ―Agent‖, ―Action‖, 

―Object‖). 

 Used in Semantic Role Labeling (SRL) and information extraction. 

Example: 

―Ram ate an apple.‖ 

→ Ram (Agent), ate (Action), apple (Object) 

 

Examples of Famous Tagged Corpora 

Corpus Name Description Language 

Brown Corpus 
First large-scale tagged corpus (1 

million words) 
English 

Penn Treebank 
POS + syntactic annotations, widely 

used 
English 

Wall Street Journal (WSJ) 

Corpus 
Subset of Penn Treebank English 

TIMIT Tagged with phonetic and speech data English 



Corpus Name Description Language 

Indian Languages Corpora 

Initiative (ILCI) 

Multilingual corpus (Hindi, Tamil, 

etc.) 

Indian 

Languages 

Universal Dependencies (UD) 
Cross-linguistic tagged corpus with 

syntactic & POS info 
Multiple 

Tagged Corpora in NLTK 

NLTK (Natural Language Toolkit) provides many tagged corpora you can use for 

training or testing taggers. 

Example: 

 

OUTPUT 

[('The', 'AT'), ('Fulton', 'NP-TL'), ('County', 'NN-TL'), ('Grand', 'JJ-TL'), ('Jury', 

'NN-TL'), ('said', 'VBD'), ...] 

How Tagged Corpora Are Used 

Step Purpose 

1. Collect text data Large samples of written/spoken language 

2. Annotate words Linguists or algorithms add tags 

3. Train taggers Machine Learning models learn from these patterns 

4. Test accuracy Compare predicted tags with tagged corpus 

5. Apply to real data Use taggers on untagged sentences 



Mapping Words to Properties Using Python Dictionaries 

This concept connects linguistic data (words) with their associated features or 

properties — and Python dictionaries are the perfect structure for this. 

 

1. What Does ―Mapping Words to Properties‖ Mean? 

In Natural Language Processing (NLP), we often need to store information about 

words — such as: 

 Their Part of Speech (POS) 

 Lemma (base form) 

 Meaning or Synonym 

 Frequency 
 Word Category (noun, verb, adjective) 

 Semantic information (like sentiment, domain, etc.) 

To do this efficiently, we map each word to its properties using a dictionary, where: 

Key = Word 

Value = Property/Properties 

 

Example: 

 

Output: 

Verb 



Why Use Dictionaries in NLP? 

Python dictionaries provide: 

 Fast lookups → O(1) access time 

 Structured storage for linguistic attributes 

 Flexibility → can store multiple features per word 

 

Real-World Uses of Word-to-Property Mapping 

Application Description 

POS Tagging Store which tag each word gets (NN, VB, etc.) 

Lemmatization Map inflected forms → base form (e.g., ―ran‖ → ―run‖) 

Word Sense Disambiguation 
Store different meanings (e.g., ―bank‖ = river side or 

financial institution) 

Sentiment Analysis Map words to polarity (positive/negative) 

Named Entity Recognition 

(NER) 
Map words to entity type (Person, Location, Organization) 

 

Example: Lemmatization Mapping 

 



Output 

 

 

Automatic Tagging 

 

What Is Automatic Tagging? 

In Natural Language Processing (NLP), Automatic Tagging means assigning tags 

(like parts of speech, named entities, etc.) to words automatically using algorithms 

or trained models — without manual human labeling. 

It’s the process of letting the computer decide the grammatical or semantic role of 

each word based on rules, statistics, or machine learning. 

 

Example 

Input Sentence: 

―The cat sat on the mat.‖ 

Automatic Tagger Output: 

 

 

Here, the tagger automatically labeled each word with its Part of Speech 

(POS) tag. 

 

 



How Automatic Tagging Works 

Automatic tagging systems use different methods depending on complexity: 

Step-by-step process: 

1. Input Sentence → ―She is playing football.‖ 

2. Tokenization → ["She", "is", "playing", "football", "."] 

3. Model checks each word: 

o Looks up word in a dictionary or corpus. 

o Checks surrounding words (context). 

o Predicts the most likely tag. 

4. Output → [('She', 'PRP'), ('is', 'VBZ'), ('playing', 'VBG'), 
('football', 'NN'), ('.', '.')] 

 

Approaches to Automatic Tagging 

There are three major approaches to automatic tagging: 

 

A. Rule-Based Tagging 

 Uses handcrafted grammatical rules and lexicons. 

 Example rules: 

o If a word ends with ―-ed‖, tag it as past tense verb (VBD). 

o If a word comes after a determiner (DT), tag it as noun (NN). 

Example: 

 

 



Pros: Accurate for small, grammatically clean datasets. 

Cons: Hard to scale; requires expert rules. 

 

B. Statistical Tagging (Probabilistic Tagging) 

Uses statistics and probabilities learned from a tagged corpus (like Brown or Penn 

Treebank). 

 Most common: Hidden Markov Model (HMM) or N-Gram Taggers. 

 Each word is tagged based on the probability of a tag given the word and its 

context. 

Formula (simplified): 

 

Example: 
If in training data: 

 ―sat‖ appears as a verb (VBD) 95% of the time, 

then the tagger will likely assign ―sat → VBD‖. 

Pros: Learns from real data. 

Cons: Needs a large tagged corpus. 

 

C. Machine Learning / Neural Network Tagging 

Modern NLP uses deep learning models like: 

 BiLSTM (Bidirectional LSTM) 

 CRF (Conditional Random Fields) 

 Transformer models (BERT, RoBERTa, etc.) 

These models learn contextual patterns from millions of examples — so they can 

understand that: 



―book‖ in ―I will book a ticket‖ → verb 

―book‖ in ―I read a book‖ → noun 

Pros: Very accurate, handles ambiguity 

Cons: Needs computational resources and training data. 

 

Example Using NLTK (Python) 

 

 

Output 

 

This is Automatic Tagging in action — done using NLTK‘s pre-trained 

tagger (Averaged Perceptron Tagger). 

 



Automatic Tagger Types in NLTK 

Tagger Description 

DefaultTagger Assigns a single default tag to all words (e.g., NN) 

RegexTagger Uses regular expressions for rule-based tagging 

UnigramTagger 
Assigns tag based on most common tag of the word (from 

corpus) 

Bigram/TrigramTagger Considers previous one/two tags for context 

BrillTagger Transformation-based learner (hybrid of rule & statistics) 

 

Advantages of Automatic Tagging 

� Saves time (vs manual tagging) 

� Scalable to millions of words 

� Improves consistency 

� Can adapt to new languages with training 

� Used in most real-world NLP systems 

 

Challenges / Limitations 

� Ambiguity — words like “bank” (river bank or financial bank) 

� Unknown words — words not seen in training data 

� Context sensitivity — ―light rain‖ (adjective) vs ―light the lamp‖ (verb) 

 

N-Gram Tagging 
 

What Is N-Gram Tagging? 

N-Gram Tagging is a statistical approach to automatic tagging in NLP. 

It assigns Part-of-Speech (POS) tags to words based on the tag(s) of the previous 

(N−1) word(s) in a sentence. 



In simple terms: 

An N-Gram Tagger uses context — the tags of nearby words — to predict the correct 

tag for the current word. 

It’s based on the idea that the tag of a word depends not only on the word itself but also 

on the tags of surrounding words. 

 

What Is an N-Gram? 

An N-Gram is a sequence of N items (words or tags) that appear together. 

N     Example      
Called 

As 

1      ―cat‖ Unigram 

2    ―the cat‖ Bigram 

3 
   ―the black 

cat‖ 
Trigram 

In tagging, we use tag sequences instead of word sequences: 

 Unigram Tagger → Uses only the current word 

 Bigram Tagger → Uses previous word‘s tag 

 Trigram Tagger → Uses previous two tags 

 

How N-Gram Tagging Works 

Step-by-step process: 

Let’s take a simple sentence: 

―The cat sat on the mat‖ 

1. Training Phase 
o The tagger is trained on a tagged corpus (e.g., Brown or Penn Treebank). 

o It learns how likely a certain tag sequence occurs. 

o For example: 



 P(NN | DT) = Probability of a Noun (NN) coming after a 

Determiner (DT). 

 P(VBD | NN) = Probability of a Past Tense Verb after a Noun. 

2. Tagging Phase 
o For each new word, the model selects the tag with the highest probability, 

given the previous (N−1) tags. 

 

Example of Bigram Tagging: 

Word Possible Tags Previous Tag Selected Tag 

The DT — DT 

cat NN, VB DT NN (since NN follows DT often) 

sat NN, VBD NN VBD (verb likely after noun) 

on IN VBD IN 

the DT IN DT 

mat NN DT NN 

 

Final Output: 

[('The', 'DT'), ('cat', 'NN'), ('sat', 'VBD'), ('on', 'IN'), ('the', 

'DT'), ('mat', 'NN')] 

 

 

N-Gram Tagging in NLTK 

NLTK provides built-in taggers for unigram, bigram, and trigram tagging. 

 

 

 



Example Code: 

 

 

OUTPUT 

 

Comparison of N-Gram Taggers 

Type Uses Pros Cons 

Unigram Tagger Only current word Fast, simple Ignores context 

Bigram Tagger Current + previous tag Context-aware Fails with unseen pairs 

Trigram Tagger Current + previous two tags More context Needs lots of data 

 

 



Example Comparison 

Sentence: ―Time flies like an arrow‖ 

Word Unigram Bigram Trigram 

Time NN NN NN 

flies NNS VBZ VBZ 

like IN IN IN 

an DT DT DT 

arrow NN NN NN 

 

Here, the Bigram/Trigram taggers help correctly identify “flies” as a verb 

(VBZ), not a noun (NNS), because of context. 

 

Applications of N-Gram Tagging 

 Part-of-Speech Tagging 

 Named Entity Recognition (NER) 

 Speech Recognition 

 Spell Correction 

 Text Prediction and Autocomplete 

 

Transformation-Based Tagging (TBL) — also known as 

Brill Tagging 

Transformation-Based Tagging is a rule-based approach to Part-of-Speech (POS) 

tagging in Natural Language Processing (NLP). 

It was introduced by Eric Brill (1995) and is one of the most famous hybrid methods 

because it combines both statistical and rule-based approaches. 

 

 



Idea Behind TBL 

 Instead of directly assigning the best possible tag using probabilities (like HMMs 

or n-grams), 

TBL starts with an initial (baseline) tagging and gradually improves it by 

learning a sequence of transformation rules. 

 These rules correct errors in the initial tagging step-by-step. 

 

How Transformation-Based Tagging Works 

1. Initialization (Baseline Tagging) 
o Start by giving each word its most likely tag (for example, using unigram 

statistics — the most frequent tag for each word in the training corpus). 

o Unknown words may get a default tag like ‗NN‘ (noun). 

Example: 

 

 

2.  Learning Transformation Rules 

 The system compares the current tags with the correct tags (from a tagged 

corpus). 

 It identifies errors and learns rules that can correct them. 

 Each rule has the form: 

―Change tag A to tag B when condition C is true.‖ 

Example Rules: 

 Change NN → VB if the word is preceded by ‗to‘ 

 Change VBD → VBN if the word ends with ‗-ed‘ 

3. Applying the Rules 

 The learned transformation rules are applied sequentially to improve tagging 

accuracy. 



 Each rule is applied only if it reduces the total number of errors. 

4. Final Output 

 After applying all rules, the output tags are much more accurate than the initial 

ones. 

 

Example 

Suppose we have: 

 



Advantages 

 Combines accuracy of statistical models and interpretability of rule-based 

systems. 

 Rules are human-readable, making debugging and analysis easier. 

 Performs well even with moderate-sized corpora. 

Disadvantages 

 Training is slow (many rule evaluations). 

 Sequential dependency — later rules depend on earlier ones. 

 May not perform as well as deep learning models on very large datasets. 

In NLTK (Python Example) 

 

This runs a demonstration showing how transformation rules are learned and applied in 

NLTK. 

 

How to Determine the Category of a Word (Part-of-

Speech Tagging in NLP) 

In Natural Language Processing (NLP), determining the category of a word means 

identifying its part of speech (POS) — for example, whether a word is a noun, verb, 

adjective, adverb, etc. 

This process is known as POS tagging or word categorization. 

 

 



What is Word Category? 

Each word in a sentence belongs to a syntactic category (also called a grammatical 

category or part of speech). 

Examples include: 

 Noun (NN) → person, place, thing — dog, book, India 

 Verb (VB) → action or state — run, eat, is 

 Adjective (JJ) → describes a noun — happy, blue, tall 

 Adverb (RB) → modifies verbs or adjectives — quickly, very 

 Preposition (IN) → shows relationship — in, on, under 

 Determiner (DT) → specifies a noun — the, a, some 

 Pronoun (PRP) → replaces a noun — he, she, it 

 

Methods to Determine the Category of a Word 

There are four main methods used in NLP to determine a word’s category: 

 

1.Lexical Lookup (Dictionary-Based Tagging) 

Each word is looked up in a lexicon (dictionary) that lists words and their possible 

categories. 

Example: 

Word Possible Categories 

book NN (noun), VB (verb) 

play VB (verb), NN (noun) 

Limitation: 

Many words are ambiguous — they can belong to multiple categories depending on 
context (e.g., “book a ticket” vs “read a book”). 

 

2.Rule-Based Tagging 

This method applies grammatical rules and context to assign the correct tag. 



Example Rules: 

 If a word ends with -ly, tag it as an adverb (RB) → quickly, slowly 

 If a word comes before a noun, tag it as an adjective (JJ) → beautiful flower 

 If a word comes after a determiner (the, a), tag it as a noun (NN) → the cat 

Example: 

 

 

3.Statistical (Probabilistic) Tagging 

Uses probability models trained on large, manually tagged corpora to predict the most 

likely tag for each word in context. 

Examples: 

 Unigram Tagger: assigns the most frequent tag for a word. 

 Bigram / Trigram Tagger: uses the tag(s) of the previous one or two words to 

predict the current tag. 

 Hidden Markov Model (HMM) Tagger: uses both emission and transition 

probabilities. 

 Neural Taggers (e.g., BiLSTM, BERT): use deep learning to capture complex 

word and sentence patterns. 

Example: 

"I saw her duck." 

 Unigram tagger: may tag duck as NN (noun) 

 Context-aware tagger: may tag duck as VB (verb) depending on context (―her 

duck to avoid something‖). 

 

 

 

 



4.Combined (Hybrid) Tagging 

Modern NLP systems (like NLTK’s pos_tag() or spaCy) combine: 

 Lexical dictionaries, 

 Statistical models, 

 And sometimes neural networks 

to achieve high accuracy. 

Example in Python (Using NLTK) 

 

 

OUTPUT 

 



Summary Table 

Method Description Example 

Lexical Lookup Dictionary lookup book → NN/VB 

Rule-Based Uses grammar rules word ending with -ly → RB 

Statistical Uses probabilities from data HMM, n-gram models 

Neural / Hybrid Uses deep learning + context BERT, spaCy, etc. 

 

 

UNIT – 3 

What is Text Classification? 

Text classification is the process of assigning predefined categories or labels to text 

documents. 

Examples: 

 Spam detection → spam / not spam 

 Sentiment analysis → positive / negative / neutral 

 News categorization → sports / politics / tech / business 

 

Supervised Classification 

Concept: 

In supervised learning, the model is trained using a labeled dataset, i.e., data where 

each text is already tagged with its correct category. 

Example training data: 

Text Label 

―Great movie, I loved it‖ Positive 

―Worst film ever‖ Negative 



The algorithm learns patterns from these examples to classify new unseen text. 

 

Steps in Supervised Text Classification: 

1. Data Collection: Gather text samples and their labels. 

2. Preprocessing: 
o Tokenization 

o Lowercasing 

o Removing stopwords 

o Stemming/Lemmatization 

3. Feature Extraction: 
Convert text into numerical form (vectors) using techniques like: 

o Bag of Words (BoW) 

o TF-IDF (Term Frequency–Inverse Document Frequency) 

o Word Embeddings (Word2Vec, GloVe) 
4. Model Training: Train a classifier (e.g., Naive Bayes, Logistic Regression, 

SVM). 

5. Prediction: Classify new, unseen texts. 

6. Evaluation: Measure accuracy and performance. 

 

Evaluation of Classifiers 

To test how well the model performs, we use evaluation metrics on test data (data not 

seen during training). 

Confusion Matrix 

 
 Predicted Positive  Predicted Negative 

Actual Positive  True Positive (TP) False Negative (FN) 

Actual Negative   False Positive (FP)  True Negative (TN) 

 

 

 

 

  



Metrics: 

 Accuracy = (TP + TN) / (TP + TN + FP + FN) 

→ Overall correctness. 

 Precision = TP / (TP + FP) 

→ Out of predicted positives, how many were correct. 

 Recall = TP / (TP + FN) 

→ Out of actual positives, how many were identified correctly. 

 F1-Score = 2 × (Precision × Recall) / (Precision + Recall) 

→ Harmonic mean of precision and recall. 

 

Naive Bayes Classifiers 

Naive Bayes is a probabilistic classifier based on Bayes‘ Theorem, assuming that all 

features (words) are independent of each other (hence ―naive‖). 

 

Bayes‘ Theorem: 

 

 



Working Example: 

Let’s classify a new sentence — ―This movie is great.‖ 

We calculate: 

 

Whichever is higher, that label is assigned. 

 

Types of Naive Bayes: 

1. Multinomial NB: Used for word counts (common for text classification). 

2. Bernoulli NB: For binary features (word present/absent). 

3. Gaussian NB: For continuous data (not common in NLP). 

Example (Python-like Logic): 

 



Advantages: 

 Simple and fast to train. 

 Works well with small datasets. 

 Performs surprisingly well for text classification. 

 

 Limitations: 

 Assumes word independence (not true in real language). 

 Cannot handle very complex relationships between words. 

 

Deep Learning for NLP – Introduction 

What is Deep Learning? 

Deep Learning (DL) is a branch of Machine Learning (ML) that uses artificial neural 

networks (ANNs) with many hidden layers (hence ―deep‖) to automatically learn 

representations (features) from raw data. 

In NLP, Deep Learning helps machines understand and generate human language — 

text, speech, and meaning — by learning from large text datasets. 

 

Why Deep Learning for NLP? 

Traditional NLP methods (like Bag-of-Words, TF-IDF, or Naive Bayes) rely on 

handcrafted features, which often: 

 Ignore word order and context. 

 Struggle with large, complex datasets. 

Deep Learning solves these by: 

�  Learning features automatically from data. 

�  Capturing semantic meaning (context, relationships, grammar). 

�  Handling complex tasks like translation, summarization, and chatbots. 

 



Neural Networks: The Foundation 

Basic Structure: 

A neural network consists of: 

1. Input Layer – Takes data (e.g., word vectors). 

2. Hidden Layers – Process features through weighted connections. 

3. Output Layer – Gives final prediction (e.g., sentiment = positive/negative). 

Each connection has a weight (w), and neurons use an activation function to introduce 

non-linearity. 

 

Activation Functions: 

They help the network learn complex relationships. 

 

 

How a Neural Network Learns: 

1. Forward Propagation: Compute output using weights. 

2. Loss Function: Compare output with true label (error). 

3. Backward Propagation: Adjust weights to reduce error (using gradient descent). 

This iterative process continues until the model’s performance improves. 

 

 



Deep Learning in NLP Tasks 

Deep Learning models can handle various NLP tasks such as: 

Task Example Model Type 

Sentiment Analysis Positive / Negative review CNN / RNN 

Text Classification Spam / Not Spam CNN / RNN 

Machine Translation English → French Seq2Seq (RNN) 

Named Entity Recognition 
―John lives in Delhi‖ → (Person, 

Location) 
Bi-LSTM 

Chatbots / Question 

Answering 
Conversational AI 

Transformer (GPT, 

BERT) 

Word Representation: Word Embeddings 

Before feeding text into neural networks, we must convert words into numbers. 

Word Embedding: 

A dense numerical vector that represents a word’s meaning and context. 

Example: 

―king‖, ―queen‖, ―man‖, ―woman‖ → vectors close in space if meanings are related. 

Common Techniques: 

 Word2Vec – Learns vector representations from text. 

 GloVe (Global Vectors) – Uses co-occurrence statistics. 

 FastText – Considers subword (character-level) information. 

These embeddings are the input features for deep learning models. 

 

 

Advantages of Deep Learning in NLP 

�  Automatically learns features (no manual feature engineering). 

�  Handles large-scale data efficiently. 



� Understands context and sequence of words. 

� Provides state-of-the-art accuracy for NLP tasks. 

 

Limitations 

� Requires large datasets and computational power. 

� Harder to interpret (black box nature). 

� Training can be slow. 

� Needs GPU/TPU for high performance. 

 

Simple Example Workflow: 

 

 

Convolutional Neural Networks (CNNs) 

Introduction: 

A Convolutional Neural Network (CNN) is a deep learning model originally designed 

for image processing, but it also works very well for text classification and NLP tasks. 



CNNs can automatically extract important local features (like key phrases or n-grams) 

from text without requiring manual feature engineering. 

 

Basic Idea 

CNNs use a special operation called convolution, which slides small filters (kernels) 

across input data to detect important patterns. 

In text, this means: 

 Detecting key word patterns (e.g., ―not good‖, ―very bad‖) 

 Capturing local dependencies between nearby words 

 

CNN Architecture for NLP 

Let’s go step-by-step  

 Step 1 – Input Layer 

The input is a sequence of words, usually converted into word embeddings. 

Example sentence: 

―The movie was really good‖ 

After embedding (say 5 words × 50-dim vector): 

→ A 5 × 50 matrix (rows = words, columns = embedding dimensions) 

 

Step 2 – Convolution Layer 

 Apply filters (kernels) that slide over the word embeddings. 

 Each filter detects a specific pattern of nearby words (like a phrase). 

Example: 

 A filter size of 2 → detects 2-word patterns (―movie was‖, ―was really‖) 

 A filter size of 3 → detects 3-word patterns (―The movie was‖) 



Each filter produces a feature map — a numerical representation of detected patterns. 

 

Step 3 – Activation Function 

After convolution, an activation function (usually ReLU) is applied to add non-linearity. 

 

This allows the model to learn complex relationships. 

 

Step 4 – Pooling Layer 

Pooling reduces the feature map’s size while keeping the most important information. 

 Max Pooling: Takes the largest value (most important feature). 

 Average Pooling: Takes the average of the region. 

For NLP, 1D Max Pooling is most common — it helps capture the strongest feature from 

each filter. 

 

 Step 5 – Fully Connected Layer 

The pooled features are flattened into a vector and passed through one or more fully 

connected (Dense) layers for final prediction. 

 

Step 6 – Output Layer 

Uses Softmax (for multi-class) or Sigmoid (for binary classification). 

Example: 

 Sentiment → Positive / Negative 

 News category → Sports / Politics / Tech 



Example CNN Architecture for Text Classification 

 

 

Simple Python Example 

 

 

Advantages of CNN in NLP 

� Captures local patterns (n-grams) efficiently. 

� Fast training (parallel computation possible). 

� Works well with short and fixed-length texts. 

� Needs fewer parameters than RNNs. 

 

Limitations 

� Cannot easily capture long-range dependencies between distant words. 

� Not ideal for sequential context understanding (for that, use RNNs or Transformers). 



Recurrent Neural Networks (RNNs) 

Introduction: 

A Recurrent Neural Network (RNN) is a deep learning model designed to handle 

sequential data, where the order of input matters — like text, speech, or time series. 

Unlike normal neural networks (which treat each input independently), RNNs have a 

memory that captures information from previous inputs. 

That makes RNNs ideal for Natural Language Processing (NLP) tasks such as: 

 Sentence classification 

 Machine translation 

 Text generation 

 Speech recognition 

 

The Need for RNNs in NLP 

Text is sequential — the meaning of a word depends on previous words. 

Example: 

―He went to the bank to deposit money.‖ 

―He sat on the bank of the river.‖ 

The word “bank” has different meanings depending on the previous words. 

 So, we need a model that can remember past context — that’s what RNNs do. 

 

 

 

 

 

 



Basic Working 

An RNN processes an input sequence one element (word) at a time, while maintaining a 

hidden state that stores information about previous steps. 

 

 

Recurrent Connection 

The key feature: 

The hidden state hth_tht depends on both current input and previous state ht−1h_{t-

1}ht−1. 

That’s why it’s called ―recurrent‖ — the network loops over time steps. 

 

Unfolded RNN Representation 

 

Each RNN cell passes its hidden state to the next — maintaining sequential 

memory. 



Types of RNNs 

Type Description Example Use 

One-to-One Standard NN Image classification 

One-to-Many One input → Sequence output Image captioning 

Many-to-One Sequence input → One output Sentiment analysis 

Many-to-Many 
Sequence input → Sequence 

output 

Translation, Speech 

recognition 

 

Problems with Basic RNNs 

Vanishing Gradient Problem: 

When training long sequences, gradients (error signals) become very small — 

the model forgets long-term dependencies. 

Hence, basic RNNs are not good at remembering context far back in the sequence. 

 

Solutions: LSTM and GRU 

To fix memory loss, two advanced RNN variants were introduced: 

LSTM (Long Short-Term Memory): 

 Uses gates (input, forget, output) to control information flow. 

 Can remember information for longer sequences. 

GRU (Gated Recurrent Unit): 

 A simplified LSTM with fewer gates (update and reset). 

 Faster to train, performs similarly well. 

 

 

 



Applications 

Task Example 

Sentiment Analysis 
Predict positive/negative 

review 

Text Generation 
Generate new sentences 

or poetry 

Machine Translation English → French 

Named Entity Recognition (NER) 
Detect names, places, 

etc. 

Speech Recognition Convert audio → text 

 

Example RNN Architecture in Python 

 

 

Advantages of RNNs 

�   Can handle sequential data and context. 

�  Useful for variable-length inputs. 

�  Effective in NLP tasks like translation and speech. 

 

 



 

Limitations 

�  Difficult to train on long sequences (vanishing gradient). 

�  Slow (can’t be fully parallelized). 

�  Forget distant context. 

(Solved by LSTM and GRU, and later by Transformers) 

 

Classifying Text with Deep Learning 

What Is Text Classification? 

Text classification is the process of assigning a label or category to a given text using 

machine learning or deep learning techniques. 

Examples: 

 Spam Detection → Spam / Not Spam 

 Sentiment Analysis → Positive / Negative 

 News Categorization → Sports / Politics / Tech 

 Intent Detection → Booking / Inquiry / Complaint 

 

Why Deep Learning for Text Classification? 

Traditional ML models (Naive Bayes, SVM, Logistic Regression) rely on hand-crafted 

features such as Bag-of-Words or TF-IDF. 

These fail to capture: 

 Context between words 

 Word order 

 Long-range dependencies 

Deep Learning models (CNNs, RNNs, LSTMs, Transformers) solve this by 

automatically learning hierarchical and contextual features from text. 



Deep Learning Workflow for Text Classification 

Let’s go step-by-step  

 Step 1 – Data Preparation 

 Collect labeled dataset (text + label). 

 Example: 

Text  Label 

―The movie was excellent‖  Positive 

―I hated the acting‖ Negative 

 Clean text (remove punctuation, lowercase, etc.). 

 Split into training and test sets. 

Step 2 – Text Representation 

Convert text into numerical form using: 

 Word Embeddings (Word2Vec, GloVe, FastText) 

 Or use Embedding Layer in deep learning frameworks like TensorFlow/Keras. 

Each word becomes a dense vector (e.g., 100 dimensions) capturing its meaning. 

 

Step 3 – Model Selection 

Depending on the nature of your data, choose a deep learning model: 

Model Strength Typical Use 

CNN Captures local n-gram patterns 
Short text / phrase 

classification 

RNN / LSTM / GRU Captures sequential context 
Long sentences / time-based 

data 

Hybrid CNN + LSTM 
Combines local + sequential 

features 
Sentiment analysis, reviews 

Transformers (BERT, 

GPT) 

Captures global attention & 

context 
State-of-the-art NLP tasks 



Step 4 – Training the Model 

1. Feed word embeddings into the network. 

2. Network learns to map patterns → labels. 

3. Use loss function like Binary Cross-Entropy or Categorical Cross-Entropy. 

4. Optimize weights via backpropagation using optimizers like Adam or SGD. 

 

Step 5 – Evaluation 

After training, evaluate performance on the test set using: 

 Accuracy 

 Precision 

 Recall 

 F1-Score 

 

Example: CNN-Based Text Classifier 

 

Used for binary classification (e.g., positive vs. negative). 

 

 

 



Example: LSTM-Based Text Classifier 

 

Used for longer text or sequence-dependent tasks. 

 

Advanced Approach: Transformers 

Modern models like BERT, RoBERTa, and GPT use self-attention to understand 

relationships between all words in a sentence simultaneously. 

They achieve state-of-the-art accuracy in most NLP classification tasks. 

Example task: 

BERT fine-tuned for sentiment analysis or spam detection. 

 

Advantages of Deep Learning for Text Classification 

�  Learns complex patterns automatically. 

�  Captures context and sequence of words. 

�  Performs better on large datasets. 

�  Can be fine-tuned for domain-specific tasks. 

 

 



Limitations 

�  Requires large labeled datasets. 

�  High computational cost (needs GPU). 

�  Longer training time. 

�  Harder to interpret (―black box‖ models). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



UNIT – 4 

Information Extraction (IE): Overview 

Definition: 
Information Extraction (IE) is the process of automatically identifying structured 

information (facts, entities, relationships) from unstructured text data such as articles, 

blogs, reviews, or social media posts. 

In simple words — 

IE converts raw text into structured data that computers can understand and use. 

 

Example 

Input (Unstructured Text): 

"Elon Musk founded SpaceX in 2002 and became the CEO of Tesla in 2008." 

Output (Structured Information): 

Entity 1 Relation Entity 2 Date 

Elon Musk founded SpaceX 2002 

Elon Musk became CEO of Tesla 2008 

 

Steps in Information Extraction 

1. Text Preprocessing 
o Tokenization (splitting into words/sentences) 

o Stopword removal 

o Lemmatization or Stemming 

2. Part-of-Speech (POS) Tagging 
o Identifies the grammatical role of words (noun, verb, adjective, etc.) 

3. Named Entity Recognition (NER) 
o Finds names of persons, organizations, locations, dates, etc. 

o Example: ―Apple‖ → Organization, ―Tim Cook‖ → Person 



4. Chunking / Shallow Parsing 
o Groups words into phrases (like Noun Phrases or Verb Phrases) 

o Example: ―the red car‖ → [NP the red car] 

5. Relation Extraction 
o Determines relationships between entities (e.g., works for, located in, 

founded by). 

6. Template Filling 
o Extracted entities and relations are placed into predefined templates or 

structured formats. 

 

Applications of Information Extraction 

 Search Engines – Extract key facts for quick answers. 

 Question Answering Systems – e.g., Chatbots using structured info. 

 Business Intelligence – Extract company, product, and price data. 

 Social Media Monitoring – Identify opinions, trends, or named entities. 

 Medical Text Mining – Extract disease, drug, and symptom relationships. 

 

Techniques Used 

Method Description 

Rule-Based Systems Use hand-written patterns or regex (e.g., ―founded by‖) 

Statistical Models Use machine learning with annotated data 

Deep Learning 

Models 

Use neural networks (e.g., BiLSTM, BERT) for NER and relation 

extraction 

 

What is Chunking? 

Definition: 
Chunking (also called shallow parsing) is the process of grouping words into 

meaningful phrases (like noun phrases or verb phrases) based on their Part-of-Speech 

(POS) tags. 

While POS tagging labels individual words, chunking combines them into higher-level 

units. 



Example 

Sentence: 

―The quick brown fox jumps over the lazy dog.‖ 

POS Tags: 

The/DT quick/JJ brown/JJ fox/NN jumps/VBZ over/IN the/DT lazy/JJ dog/NN 

Noun Phrase (NP) Chunking Output: 

[NP The quick brown fox] [VP jumps] [PP over] [NP the lazy dog] 

 

Purpose of Chunking 

Chunking helps extract structured information by: 

 Identifying phrases (like subjects, objects, etc.) 

 Simplifying sentence structure for further tasks 

 Preparing text for Named Entity Recognition (NER) or Relation Extraction 

 

Types of Chunks 

Type Example Description 

NP (Noun Phrase) The red car A noun with its modifiers 

VP (Verb Phrase) is running fast Verb with adverbs or auxiliaries 

PP (Prepositional Phrase) in the park Preposition with a noun phrase 

ADJP (Adjective Phrase) very beautiful Adjectives with modifiers 

 

 

 



Chunking Process 

1. Tokenization → Break text into words 

2. POS Tagging → Assign parts of speech 

3. Apply Chunking Rules → Define patterns using regular expressions based on 

POS tags 

4. Chunk Extraction → Identify and group phrases 

Example in Python (using NLTK) 

 

This will show a tree structure grouping the words into a noun phrase (NP). 



Evaluating Chunkers 

When you train a chunker using annotated data, you can evaluate its 

performance using: 

Metric  Description 

Precision % of correctly predicted chunks out of all predicted chunks 

Recall % of correctly predicted chunks out of all actual chunks 

F1 Score Harmonic mean of precision and recall 

 

Chunking vs Parsing 

Aspect Chunking Full Parsing 

Depth Shallow (phrases only) Deep (full grammatical structure) 

Speed Fast Slower 

Purpose Identify key groups (NP, VP) Understand full syntax tree 

 

Applications 

 Information Extraction (e.g., identifying ―organization names‖) 

 Named Entity Recognition (NER) 

 Question Answering Systems 

 Machine Translation 

 Text Summarization 

 

What is a Chunker? 

A chunker is a model or a rule-based system that automatically detects and groups 

phrases (like noun phrases, verb phrases) in a sentence after POS tagging. 

In short: 

Chunking = POS tagging + Pattern recognition for phrases 



You can develop a chunker using: 

 Rule-based (Grammar/Regex) approach 

 Machine learning-based approach (trained chunkers) 

Developing a Chunker 

There are two main ways: 

A. Rule-Based Chunker (Using Regular Expressions) 

We define patterns using POS tags to identify chunks. 

Example: 

 



Explanation: 

 <DT>? → Optional Determiner (like the, a, an) 

 <JJ>* → Zero or more adjectives 

 <NN> → Noun 

So this rule captures noun phrases like “The beautiful red car”. 

 

B. Machine Learning-Based Chunker 

Uses supervised learning — you train a model with: 

 Input: POS-tagged sentences 

 Output: Chunk labels (e.g., ―B-NP‖, ―I-NP‖, ―O‖) 

Example using NLTK’s built-in dataset: 

 

 



This type of model learns patterns automatically from annotated corpora like 

CONLL 2000. 

 

Evaluating Chunkers 

Once a chunker is developed, its performance must be evaluated on a test set. 

Evaluation Metrics: 

 

 

Evaluating in NLTK 

 



OUTPUT 

 

 

Importance of Evaluation 

 Helps measure accuracy and reliability of the chunker. 

 Allows comparison between different approaches (rule-based vs ML). 

 Ensures robustness for downstream tasks like NER or relation extraction 

 

Recursion in Linguistic Structure 

Definition: 
In linguistics, recursion means a phrase can contain another phrase of the same type 

— this allows language to express infinite ideas with finite rules. 

In simple words: 

Recursion lets sentences embed smaller sentences or phrases inside themselves. 

 

Example 

1. Basic sentence: 

―The cat sat.‖ 

2. Add a phrase (recursion in noun phrase): 

―The cat on the mat sat.‖ 

3. Add another phrase: 



―The cat on the mat near the door sat.‖ 

Here, each noun phrase (―cat‖, ―cat on the mat‖, ―cat on the mat near the door‖) contains 

another noun phrase → recursion in structure. 

Why Recursion Happens 

Language has hierarchical structure — a sentence (S) is made up of phrases (NP, VP, 

PP), and those phrases can contain other phrases of the same kind. 

For example: 

 

Because NP → NP PP, it allows recursion — 
A noun phrase (NP) can contain a prepositional phrase (PP), and that PP 

again can contain another NP. 

Example Tree 

For the sentence: 

―The book on the table in the room is mine.‖ 

 

 



Here you can see: 

 NP contains a PP 

 That PP contains another NP 

 That NP again contains another PP 

→ recursive pattern! 

 

Importance of Recursion in NLP 

Task Role of Recursion 

Parsing Helps build hierarchical syntactic trees. 

Information Extraction Allows extraction from nested phrases. 

Machine Translation Handles nested and dependent clauses correctly. 

Question Answering Helps understand embedded questions. 

Text Summarization Recognizes main vs subordinate clauses. 

Recursion in Grammar Rules (CFG) 

In Context-Free Grammars (CFGs) — used in NLP parsers — recursion appears 

naturally in rules: 

 

Example: 

 

If the grammar allows a non-terminal (like NP) to appear on both sides of a 

rule, it‘s recursive. 

 

 

 



Recursion in Programming (Python + NLTK Example) 

You can visualize recursive linguistic structure using NLTK‘s parser: 

 

This creates a recursive parse tree — showing nested NP and PP structures. 

 

What is Named Entity Recognition (NER)? 

Definition: 
Named Entity Recognition (NER) is the process of identifying and classifying named 

entities in a text into predefined categories such as person names, organizations, 

locations, dates, monetary values, etc. 

In simple words — 

NER finds real-world objects in text and labels them with their type. 

 



 Example: 

Sentence: 

―Elon Musk founded SpaceX in 2002 and lives in Texas.‖ 

NER Output: 

Entity Type 

Elon Musk PERSON 

SpaceX ORGANIZATION 

2002 DATE 

Texas LOCATION 

 

Steps in Named Entity Recognition 

1. Text Preprocessing 
o Tokenization 

o Stopword Removal 

o Lemmatization 

2. Part-of-Speech (POS) Tagging 
o Identifies grammatical roles (noun, verb, etc.) 

3. NER Tagging 
o Detects entities and assigns category labels 

o e.g., New York → LOCATION, Google → ORGANIZATION 

4. Post-Processing 
o Merge or refine overlapping entities. 

 

Common Named Entity Types 

Category Examples 

PERSON Elon Musk, Narendra Modi 

ORGANIZATION Google, Gurugram University 

LOCATION Delhi, India, Ganga River 

DATE/TIME 12th February 2005, 5 PM 

MONEY ₹5000, $10 million 



Category Examples 

PERCENT 25%, 80 percent 

PRODUCT iPhone, Tesla Model S 

EVENT Olympic Games, World War II 

 

Approaches to NER 

A. Rule-Based (Pattern Matching) 

 Uses regular expressions and hand-written linguistic rules. 

 Example: Words ending with Ltd. → ORGANIZATION 

 Works well for simple domains but fails on complex language. 

 

B. Machine Learning-Based 

 Train models using labeled corpora (supervised learning). 

 Uses features like capitalization, word shape, POS tags, etc. 

 Common algorithms: 

o Hidden Markov Model (HMM) 

o Conditional Random Fields (CRF) 

o Support Vector Machines (SVM) 

 

C. Deep Learning-Based (Modern NER) 

 Uses neural networks to automatically learn features from text. 

 Common architectures: 

o BiLSTM + CRF 

o CNN + LSTM 

o Transformers (BERT, RoBERTa, GPT, etc.) 
 Highly accurate and widely used today. 

 

 



Example in Python (using spaCy) 

 

Output 

 

(GPE = Geopolitical Entity, i.e., country, city, or state) 

 

 

 



Applications of NER 

Application Example 

Information 

Extraction 
Extract company names, dates, and locations from news articles 

Question Answering Identify key entities in user queries 

Summarization Highlight people, places, and organizations in summaries 

Search Engines Improve relevance by recognizing entity names 

Chatbots 
Understand entities like names, dates, and locations from user 

messages 

 

What is Relation Extraction (RE)? 

Definition: 
Relation Extraction (RE) is the process of detecting and classifying semantic 

relationships between entities identified in a text. 

In simple words — 

After NER finds who and what, 

Relation Extraction finds how they are related. 

 

Example 

Sentence: 

―Elon Musk founded SpaceX in 2002.‖ 

From NER: 

 Elon Musk → PERSON 

 SpaceX → ORGANIZATION 

 2002 → DATE 

 

 



Relation Extraction Output: 

Entity 1 Relation Entity 2 Extra Info 

Elon Musk founded SpaceX 2002 

So, RE helps us capture (Subject, Relation, Object) triplets — 

→ (Elon Musk, founded, SpaceX) 

 

Steps in Relation Extraction 

1. Preprocessing 
o Tokenization, POS tagging, and dependency parsing. 

2. Named Entity Recognition (NER) 
o Identify entities like PERSON, ORGANIZATION, LOCATION, etc. 

3. Relation Detection 
o Identify whether a relationship exists between two entities. 

4. Relation Classification 
o Classify the type of relation (e.g., founded by, born in, located in, etc.). 

 

Types of Relations 

Category Example Relation Type 

Organizational ―Elon Musk founded SpaceX.‖ founderOf 

Geographical ―Taj Mahal is located in Agra.‖ locatedIn 

Personal ―Barack Obama is married to Michelle Obama.‖ spouseOf 

Professional ―Sundar Pichai is CEO of Google.‖ worksFor 

Temporal ―World War II ended in 1945.‖ endedIn 

 

 

 

 



Approaches to Relation Extraction 

A. Rule-Based (Pattern Matching) 

 Uses manually defined patterns or regular expressions. 

 Example rule: 

If pattern matches ―X founded Y‖ → Relation = founderOf 

 

Example: 

―Steve Jobs founded Apple.‖ 

→ (Steve Jobs, founderOf, Apple) 

� Simple but � fails for complex sentence structures. 

 

B. Supervised Machine Learning 

 Uses annotated datasets (text with labeled relations). 

 Each entity pair becomes a training example. 

 Features used: POS tags, dependency paths, word distance, etc. 

 Common algorithms: 

o Support Vector Machines (SVM) 

o Decision Trees 

o Naive Bayes 

o Logistic Regression 

� More flexible than rules, but � needs large labeled data. 

 

C. Deep Learning / Neural Models 

 Automatically learn features from raw text. 

 Common architectures: 

o CNN (captures local word patterns) 

o RNN / LSTM (captures long dependencies) 

o Transformer-based models like BERT, RoBERTa 



Example: 

Sentence: ―Bill Gates founded Microsoft.‖ 

→ Model output: (Bill Gates, founder_of, Microsoft) 

� Very accurate 

� Requires high computation and large data. 

 

 

Relation Extraction Example (using spaCy) 

 

 

 



OUTPUT 

 

 

 

Applications of Relation Extraction 

Field Example 

Knowledge Graphs 
Build (Entity, Relation, Entity) triples for Google 

Knowledge Graph 

Question Answering 

Systems 

―Who founded Tesla?‖ → extract (Elon Musk, founderOf, 

Tesla) 

Information Retrieval Enhance search by linking related entities 

Biomedical NLP Extract relations like (Drug, treats, Disease) 

News Analysis Identify relations between people, events, and organizations 

 

Analyzing Sentence Structure 

Analyzing sentence structure in NLP means understanding how words are organized 

and related in a sentence. 

It’s about syntax — the rules and patterns governing how words combine to form 

meaningful sentences. 

Before extracting meaning, we need to know what role each word plays (subject, verb, 

object, modifier, etc.) and how phrases are structured. 

 

 

 



Some Grammatical Dilemmas 

In natural language, many sentences can be ambiguous or have structures that are 

difficult for computers to parse. These are called grammatical dilemmas. 

A. Syntactic Ambiguity 

 A sentence can have more than one valid parse. 

 Example: 

―I saw the man with a telescope.‖ 

Two interpretations: 

1. I used a telescope to see the man. 

2. The man I saw had a telescope. 

 Computers must decide which structure is intended, which is tricky without 

context. 

 

B. Part-of-Speech Ambiguity 

 A word can have multiple possible POS tags depending on context. 

 Example: 

―Book the flight.‖ → Book = verb 

―The book is on the table.‖ → Book = noun 

 NLP systems must disambiguate words based on sentence structure. 

 

C. Attachment Ambiguity 

 Ambiguity about which part of the sentence a phrase modifies. 

 Example: 

―She saw the boy with the binoculars.‖ 

o Did she have the binoculars? 

o Or did the boy have them? 



 This is common with prepositional phrases (PPs). 

 

D. Coordination Ambiguity 

 Ambiguity in sentences with ―and,‖ ―or,‖ or other conjunctions. 

 Example: 

―He saw the man and the woman with a telescope.‖ 

o Does with a telescope modify both man and woman or just woman? 

 

E. Modifier Scope Ambiguity 

 Ambiguity arises from adjectives or adverbs. 

 Example: 

―Old men and women were present.‖ 

o Are both men and women old? Or only the men? 

 

F. Ellipsis / Missing Elements 

 Some sentences omit words but are still understandable to humans. 

 Example: 

―I ordered pizza, and John [ordered] pasta.‖ 

o NLP must infer the missing verb. 

 

Why These Dilemmas Matter in NLP 

 Ambiguities cause parsing errors, which affect downstream tasks: 

o Information Extraction → Misidentified entities or relations 

o Machine Translation → Incorrect translations 

o Question Answering → Wrong answers due to misinterpreted structure 



 Handling these dilemmas often requires: 

o Contextual information (e.g., surrounding sentences) 

o Probabilistic models (like probabilistic CFGs) 

o Deep learning approaches that learn likely structures 

 

 Syntax in NLP 

Syntax is the set of rules that governs how words are combined to form grammatically 

correct sentences. 

In NLP, syntax helps analyze the structure of a sentence, rather than just its words, 

allowing systems to understand relationships between words. 

Syntax = the structure of the sentence. Semantics = the meaning of the sentence. 

 

Why Syntax is Important 

Syntax is crucial in NLP because many tasks cannot rely solely on individual words. 

Understanding sentence structure helps in: 

1. Disambiguating Meaning 
o Example (Attachment ambiguity): 

―I saw the man with a telescope.‖ 

Syntax helps determine whether with a telescope refers to ―I‖ or ―the 

man‖. 

2. Information Extraction 
o Helps extract structured knowledge like entities and relationships. 

o Example: 

―Elon Musk founded SpaceX.‖ 

Knowing subject-verb-object structure → (Elon Musk, founded, 

SpaceX) 

3. Machine Translation 
o Accurate translation requires understanding sentence structure, not just 

word-by-word translation. 

4. Question Answering & Chatbots 



o Understanding syntax helps identify who did what to whom. 

o Example: ―Who founded SpaceX?‖ 

 Needs subject-verb-object parsing. 

5. Summarization 
o Syntax helps identify main clauses versus subordinate clauses to 

summarize key information. 

6. Grammar Checking 
o Detect errors in writing using syntactic rules. 

 

Syntax vs Semantics 

Aspect Syntax Semantics 

Focus Structure of sentence Meaning of sentence 

Example ―The cat sat on the mat.‖ Understanding that a cat is sitting on a mat 

Role in NLP Parsing, POS tagging, chunking NER, Relation Extraction, QA 

 

How Syntax is Represented in NLP 

1. Parse Trees 
o Trees represent hierarchical structure of sentences. 

o Example: Noun Phrases (NP), Verb Phrases (VP), Prepositional Phrases 

(PP). 

2. Context-Free Grammar (CFG) 
o Defines rules for generating valid sentences (we’ll study this in next 

topic). 

3. Dependency Parsing 
o Represents syntactic relationships as dependencies between words. 

o Example: In ―Elon Musk founded SpaceX‖, founded → root, Elon Musk → 

subject, SpaceX → object. 

 

 

 



Context-Free Grammar (CFG) 

Definition: 
A Context-Free Grammar (CFG) is a set of rules used to generate all possible 

sentences in a language. 

It defines how words and phrases combine hierarchically to form valid sentences. 

CFG is called ―context-free‖ because the rules apply regardless of surrounding words. 

 

Components of a CFG 

A CFG consists of four parts: 

1. Terminals (Σ) 
o The actual words in the language. 

o Example: ―dog‖, ―barks‖, ―the‖, ―runs‖ 

2. Non-terminals (N) 
o Syntactic categories or placeholders for phrases. 

o Example: S (sentence), NP (noun phrase), VP (verb phrase), PP 

(prepositional phrase) 

3. Start Symbol (S) 
o Represents a complete sentence. Parsing starts from this. 

o Usually S is used. 

4. Production Rules (P) 
o Define how non-terminals can be expanded into other non-terminals or 

terminals. 

o Example: 

 

 

 

 



How CFG Works (Example) 

Goal: Generate the sentence → ―The cat sleeps‖ 

Grammar Rules: 

 

Derivation: 

 

This shows how a CFG generates a valid sentence step by step. 

 

Why CFG is Useful in NLP 

1. Parsing Sentences 
o Helps build parse trees that represent the hierarchical structure of 

sentences. 

2. Syntax Analysis 
o Ensures sentences follow grammatical rules. 



o Detects errors or ambiguity. 

3. Supports Downstream NLP Tasks 
o Information Extraction – identify subjects, objects, relations 

o Machine Translation – map structure to target language 

o Question Answering – understand syntactic relations 

4. Recursive Structures 
o CFG naturally handles recursion, e.g., nested noun phrases or prepositional 

phrases. 

 

Example CFG Parse Tree 

Sentence: ―The cat sat on the mat‖ 

 

Shows sentence structure with NP, VP, PP, DT, NN, VB. 

 

Key Notes 

 CFG is simpler than full natural language grammar but powerful enough for 

many NLP tasks. 



 Ambiguities still exist — multiple parse trees may be possible. 

 Can be extended with probabilities → Probabilistic CFG (PCFG), which helps 

choose the most likely parse. 

What is Parsing? 

Definition: 
Parsing is the process of analyzing the syntactic structure of a sentence according to a 

grammar (like CFG). 

In NLP, parsing helps determine how words in a sentence are related and constructs a 

parse tree showing hierarchical structure. 

 

Why Parsing is Important 

1. Understanding Sentence Structure 
o Identifies subjects, verbs, objects, and modifiers. 

2. Disambiguation 
o Resolves structural ambiguity in sentences. 

o Example: ―I saw the man with a telescope‖ → different parse trees for 

different interpretations. 

3. Supports Downstream NLP Tasks 
o Information Extraction → identifies entities and relationships 

o Machine Translation → maps structures between languages 

o Question Answering → identifies what action involves which entity 

 

How Parsing Works with CFG 

Step 1: Start with the Start Symbol 

 Typically S (sentence) 

Step 2: Apply Production Rules 

 Expand non-terminals (like NP, VP, PP) using CFG rules 

 



 

Step 3: Match Terminals 

 Continue expansions until all words in the sentence are matched 

Step 4: Build Parse Tree 

 Each expansion forms a node in the tree 

 Leaf nodes are the actual words (terminals) 

Example CFG 

Grammar: 

 

 

Sentence: 

―The quick fox jumps over the dog‖ 

 

 

 

 



Parse Tree: 

 

Types of Parsers 

1. Top-Down Parsing 
o Start from start symbol and try to generate the sentence. 

o Checks if CFG rules can produce the sentence. 

2. Bottom-Up Parsing 
o Start from words in the sentence and try to combine them to form higher-

level phrases until reaching the start symbol. 

3. Chart Parsing 
o Efficient method storing partial parses in a chart to avoid redundant 

computations. 

4. Probabilistic Parsing (PCFG) 
o Assigns probabilities to CFG rules 

o Chooses the most likely parse tree in case of ambiguity 

 

 

 

 



Parsing in NLP Tools (Example with NLTK) 

 

 

 

This generates the parse tree, showing how the sentence is constructed from the CFG. 


