
NLP Complete Notes – Tauqueer Alam

UNIT - 1

Computing with Language: Texts and Words

This is one of the first chapters when learning NLP using Python (especially with

NLTK).

It focuses on how computers handle text, and how we can analyze language data

computationally.

Let’s break it down

What It Means

―Computing with Language‖ means using Python programs to:

 Process large collections of text (called corpora),

 Count and search words,

 Analyze word patterns and frequencies,

 Understand structure and meaning in human language.

So the goal is to use Python to treat language as data and do useful computations on it.

Common NLP Tasks Here

Task Description Example

Tokenization Splitting text into words or sentences
"Hello world!" → ["Hello",

"world", "!"]

Counting

Words
Finding frequency of each word

Count how many times ―Python‖

appears

Concordance
Find occurrences of a word and its

surrounding words

Find all places where ―science‖

occurs in a text

Collocation Commonly occurring word pairs ―Machine learning‖, ―New York‖

Dispersion Plot
Shows where words appear in the

text

Plot ―freedom‖ and ―war‖ in a

novel

A Closer Look at Python: Texts as Lists of Words

Once you have text data, you need to represent and manipulate it.

In Python, text can be treated as:

 Strings (continuous sequences of characters), or

 Lists of words (tokens).

 Texts as Lists

If you split a text into words using split() or NLTK’s tokenizer, you get a list:

Now you can use Python list operations:

Why Treat Text as a List?

Because:

 You can loop, count, slice, and search words easily.

 It helps in feature extraction, frequency distribution, and pattern matching.

Example: Word Frequency

This tells you which words appear most frequently — very useful in text analysis.

Common Python List Operations for NLP

Operation Example Result

Indexing words[1] 2nd word

Slicing words[1:3] subset of words

Membership 'Python' in words True

Concatenation words + ['rocks!'] add new words

Iteration for w in words: loop through text

Example Combined

Computing with Language: Simple Statistics

This topic introduces basic statistical analysis on text data — one of the most important

foundations for NLP and Data Science.

What It Means

You learn how to use mathematics and statistics to extract useful information from

language — like word frequency, richness of vocabulary, or word distributions.

It’s about quantifying how language behaves.

Common Statistical Measures in NLP

Concept Description Example

Frequency Distribution

(FDist)
How often each word appears ―Python‖ appears 50 times

Lexical Diversity
Ratio of unique words to total

words

len(set(words)) /

len(words)

Word Length

Distribution

Average or histogram of word

lengths
Mean word length = 5.2

Conditional Frequency
Frequency of words under

certain conditions

How often "news" occurs

after ―fake‖

Example in Python (Using NLTK

OUTPUT

Why Important?

Simple statistics give us:

 Insights about text structure (how repetitive or rich it is)

 Data for feature engineering in ML models

 Basis for topic modeling or document comparison

Back to Python: Making Decisions and Taking Control

Now we switch back to Python concepts that help control program flow — essential for

building NLP pipelines that make decisions automatically.

What It Means

Here you learn how to use:

 Conditional statements (if, elif, else)

 Loops (for, while)

 Functions (def)

 Comprehensions (like [w for w in words if len(w) > 5])

These let your program make decisions, filter data, and react to text patterns

dynamically.

Example 1 — Using Conditions

Output: Ends with 'on'

Example 2 — Using Loops in Text Processing

OUTPUT:

learning

Natural

Language

Processing

Why Important?

Because NLP programs need to:

 Filter specific kinds of words (e.g., nouns, verbs, stopwords)

 Handle multiple conditions (e.g., if token is alphabetic, not numeric)

 Control flow (e.g., skip punctuation, lowercase all words, etc.)

So this part ensures you can control text analysis intelligently.

Automatic Natural Language Understanding

This is where we shift from counting and manipulating words → to understanding

meaning.

It introduces the goal of NLP — enabling computers to understand and respond to

human language automatically.

What It Means

Automatic Natural Language Understanding (NLU) is the ability of a computer to:

 Interpret human language (text or speech)

 Extract meaning (semantics, intent, entities)

 Generate responses intelligently

Subfields Involved

Area Description Example

Tokenization
Breaking text into

words/sentences

―I love NLP‖ → [―I‖, ―love‖,

―NLP‖]

POS Tagging Identifying part of speech ―love‖ → verb

Named Entity Recognition

(NER)

Identifying names, places,

dates
―Elon Musk‖ → PERSON

Parsing Analyzing sentence structure Grammar trees

Semantic Analysis Understanding meaning of ―bank‖ → riverbank or

Area Description Example

text financial bank

Sentiment Analysis Detecting opinion or emotion ―good‖ → positive

Coreference Resolution Linking pronouns to nouns ―He‖ → ―John‖

Machine Translation Converting languages English → Hindi

Example Using NLTK

OUTPUT

Why Important?

Because NLU is what enables:

 Chatbots (like Siri, Alexa, ChatGPT �)

 Sentiment analysis

 Search engines

 Translation systems

 Question-answering bots

 Voice assistants

It’s the “intelligent” side of NLP.

Accessing Text Corpora

What Is a Corpus?

A corpus (plural: corpora) is a large collection of text — like books, news articles,

tweets, or speech transcripts — used for language research and NLP model training.

In NLP, corpora are used to:

 Analyze language structure

 Train models (for tagging, translation, sentiment, etc.)

 Study word usage and frequency

Accessing Corpora in NLTK

NLTK provides many built-in corpora.

Example: Reading Text

OUTPUT

Corpus Operations

Operation Description Example

.words() Returns list of all words
gutenberg.words('austen-

emma.txt')

.sents()
Returns list of sentences (each

sentence = list of words)
brown.sents(categories='news')

.raw() Returns entire text as one string
gutenberg.raw('austen-

emma.txt')

Why Important?

Accessing corpora lets you:

 Work with real-world text

 Compute statistics (word count, frequency, diversity)

 Train and evaluate models on large text data

What is a Conditional Frequency Distribution?

A Conditional Frequency Distribution (CFD) in NLP is used to find how often

something happens under certain conditions.

Think of it like:

―How many times does a word appear in a specific category (condition)?‖

Example to Understand

Imagine you have two categories (conditions):

 News

 Romance

Each category has words (data).

Category Words

News
"war", "president", "election",

"war", "budget"

Romance
"love", "kiss", "love", "heart",

"beautiful"

Now you want to know:

 How many times the word ―love‖ appears in romance?

 How many times the word ―war‖ appears in news?

Example in Python (Using NLTK)

OUTPUT

Why Useful?

It helps analyze word usage patterns:

 Compare words across genres or time periods

 Understand context-based frequency

 Build features for text classification

Lexical Resources

What Are Lexical Resources?

These are structured databases of words — collections that tell you:

 Meanings

 Synonyms / antonyms

 Parts of speech

 Example usage

Examples include:

 WordNet (most popular in NLP)

 Stopwords lists

 Pronunciation dictionaries

 Sentiment lexicons

Example: Stopwords

Stopwords are common words like is, the, a, in — usually removed before analysis.

OUTPUT

['i', 'me', 'my', 'myself', 'we', 'our', 'ours', 'ourselves', 'you', "you're"]

Why Important?

Lexical resources give semantic and linguistic structure — essential for:

 Lemmatization (getting word roots)

 Synonym/antonym detection

 Sentiment or tone detection

 Building knowledge-based systems

WordNet

What Is WordNet?

WordNet is a large lexical database of English.

It groups English words into synsets (sets of synonyms) and records relationships

between them — like:

 Synonyms

 Antonyms

 Hypernyms (is-a)

 Hyponyms (sub-type)

 Meronyms (part-of)

Why WordNet Is Important

WordNet is crucial in NLP for:

 Semantic analysis (understanding meaning)

 Text classification using word relations

 Word sense disambiguation

 Question answering and summarization

 Knowledge graphs and ontology-based AI

UNIT – 2

Processing Raw Text – Accessing Text from the Web and

from Disk

This topic teaches how to get raw text data (like articles, books, or tweets) into Python

for NLP tasks.

Before we analyze or clean text, we must access (load) it — either from the internet

(web) or from our computer (disk)

Accessing Text from the Web

In NLP, we often need text from online sources — like web pages, blogs, or Wikipedia

articles.

Common Ways to Access Text from the Web

(a) Using urllib (Built-in Python Library)

urllib lets us open URLs and read the text (HTML content) of web pages.

Explanation:

 urlopen() → opens the web page

 read() → reads the content

 decode('utf8') → converts it into a readable string

(b) Using requests library (simpler & modern)

requests is easier and cleaner than urllib.

(c) Removing HTML Tags (if web page has HTML)

Web pages often contain tags like <p> or <div>.

We can remove them using BeautifulSoup (a web-scraping library).

Now you have pure text (no HTML)

Accessing Text from Disk (Local Files)

If the text is already stored on your computer (like .txt, .csv, .docx), you can read it

easily in Python.

(a) Reading a Text File

r" means read mode.

Always close the file after reading.

(b) Using with (Recommended)

Automatically closes file — safer and cleaner.

(c) Reading Multiple Files

If you have many text files in a folder:

Processing the Text

After loading text (from web or disk), you usually want to:

1. Tokenize → split text into words or sentences

2. Normalize → lowercase, remove punctuation, etc.

Example:

Strings — Text Processing at the Lowest Level

In NLP, everything starts with text, and in Python, text = string.

Before we use advanced tools (like NLTK tokenizers), we should understand how

strings work, because they are the lowest-level representation of text in Python.

What is a String?

A string is a sequence of characters — letters, numbers, symbols, or spaces — enclosed

in quotes.

Accessing Characters in a String

You can access any character by its index number (just like list indexing).

 Indexing starts from 0.

String Slicing

You can extract parts of strings using slice notation [start:end].

String Operations

Python provides many useful string operations for text processing:

Operation Description Example

+ Concatenate strings "Hello " + "World" → "Hello World"

* Repeat string "Hi!" * 3 → "Hi!Hi!Hi!"

len() Find length len("Python") → 6

in Check substring "Lang" in "Language" → True

String Methods for Text Cleaning

Method Function Example Output

lower() Convert to lowercase "PYTHON".lower() python

upper() Convert to uppercase "python".upper() PYTHON

title() Capitalize each word "hello world".title() Hello World

strip() Remove spaces " text ".strip() text

replace() Replace substring
"AI is cool".replace("cool",

"fun")
AI is fun

split()
Split string into

words
"AI with Python".split()

['AI', 'with',

'Python']

join() Join list into string
" ".join(['AI', 'with',

'Python'])
AI with Python

Checking String Content

Function Purpose Example Output

isalpha() Checks if all characters are letters "Hello".isalpha() True

isdigit() Checks if all characters are digits "123".isdigit() True

isalnum() Checks if alphanumeric "AI123".isalnum() True

isspace() Checks if only spaces " ".isspace() True

Example: Basic Text Preprocessing Using Strings

OUTPUT

['natural', 'language', 'processing', 'or', 'nlp', 'is', 'amazing']

Text Processing with Unicode

When working with Natural Language Processing (NLP), we often deal with many

languages, symbols, and special characters.

To process all of them correctly, Python uses a system called Unicode — a universal way

to represent text from every language.

What is Unicode?

 Unicode is a standard that assigns a unique number (called a code point) to every

character in every language.

 It solves the problem of earlier encodings (like ASCII) that could only handle

English letters.

Character Unicode Code Point Description

A U+0041 English Capital A

a U+0061 English Small a

अ U+0905 Hindi Letter A

中 U+4E2D Chinese Character

� U+1F600 Emoji: Grinning Face

Every symbol has its own unique code — making it possible to mix

languages safely in the same file.

Encoding and Decoding

Encoding = converting text → bytes

Decoding = converting bytes → text

This is important when reading/writing files or transferring text across the web.

OUTPUT

'utf-8' is the most common encoding — supports all languages.

Regular Expressions for Detecting Word Patterns

1. Introduction

 Regular expressions (also called regex) are powerful tools used to find, match,

and manipulate text patterns in strings.

 In NLP, they are often used for tokenization, pattern matching, cleaning text,

and information extraction (like finding emails, phone numbers, dates, etc.).

Example:

If you want to find all words starting with a capital letter in a paragraph, you can do it

easily using a regular expression

Importing Regex Module in Python

Python provides the re module to work with regular expressions.

Basic Regex Functions

Function Description

re.match() Checks if the pattern matches at the beginning of the string

re.search() Searches for the first occurrence of the pattern

re.findall() Returns all occurrences of the pattern

re.sub() Replaces text that matches the pattern

re.split() Splits a string using the pattern as delimiter

Common Regex Symbols

Symbol Meaning Example Matches

. Any character except newline h.t ―hat‖, ―hit‖, ―hot‖

^ Start of string ^Hello Matches if string starts with "Hello"

$ End of string world$ Matches if string ends with "world"

\d Any digit (0–9) \d+ "123", "56"

\w Any word character (a–z, A–Z, 0–9, _) \w+ "hello", "Python3"

\s Any whitespace \s+ space, tab, newline

* 0 or more repetitions ab* "a", "ab", "abb", "abbb"

+ 1 or more repetitions ab+ "ab", "abb"

? 0 or 1 occurrence colou?r "color", "colour"

Symbol Meaning Example Matches

[] Set of characters [aeiou] matches vowels

{m,n} Between m and n repetitions \d{2,4} "12", "2024"

` ` OR condition `cat

Example 1: Find All Words Starting with Capital Letter

OUTPUT

Example 2: Extract All Email Addresses

OUTPUT

Useful Applications of Regular Expressions

(a) Tokenization

Splitting sentences or paragraphs into words or tokens.

(b) Removing Unwanted Characters

Cleaning text by removing punctuation, special characters, or numbers.

(c) Extracting Email Addresses

Finding and collecting all emails from a large text (useful for scraping or contact

extraction).

(d) Extracting Phone Numbers

Finding phone numbers in documents or web pages.

(e) Extracting Dates

Detecting date formats like 12/10/2025 or 2025-10-12.

(f) Detecting Capitalized Words (e.g., Names, Locations)

Useful in Named Entity Recognition (NER) or for extracting proper nouns.

(g) Removing Extra Spaces

Cleaning messy text with multiple spaces or tabs.

(h) Extracting Hashtags or Mentions (for Social Media Data)

Very useful in NLP when analyzing tweets or Instagram captions.

Normalizing Text

1. Introduction

In Natural Language Processing (NLP), text normalization means converting text into a

standard or uniform format so that it can be easily processed by algorithms.

Human language is very inconsistent — we write the same thing in different ways:

 ―U‖ and ―you‖ mean the same.

 ―Running‖, ―runs‖, and ―ran‖ are forms of ―run‖.

 ―I’m‖ and ―I am‖ are equivalent.

To make text consistent, we perform normalization before feeding it to any NLP model.

Why Normalization is Important

Because:

 It reduces variations in words that mean the same thing.

 It improves accuracy of NLP models.

 It makes text clean, consistent, and comparable.

Example:

Without normalization:
["Running", "runs", "Ran"]

After normalization:
["run", "run", "run"]

Common Text Normalization Techniques

(a) Lowercasing

Convert all characters to lowercase to avoid duplication.

OUTPUT

(b) Removing Punctuation and Special Characters

Punctuation marks are usually not meaningful for NLP tasks.

OUTPUT

(c) Removing Stopwords

Stopwords are common words like ―is‖, ―the‖, ―a‖, ―an‖, etc., which do not add meaning.

OUTPUT

(d) Stemming

Stemming reduces words to their root form (not necessarily a real word).

Example:

―Playing‖, ―played‖, ―plays‖ → ―play‖

(e) Lemmatization

Lemmatization also reduces words to their base form (lemma), but it uses vocabulary

and grammar for more accuracy.

Example:

―Better‖ → ―good‖ (correct lemma)

―Was‖ → ―be‖

(f) Expanding Contractions

Converting shortened words to their full form:

 ―I’m‖ → ―I am‖

 ―don’t‖ → ―do not‖

Combined Example

Let’s apply multiple normalization steps together

OUTPUT

Regular Expressions for Tokenizing Text

1. Introduction

Tokenization is the process of splitting text into smaller units — usually words,

sentences, or phrases.

Regular expressions (regex) help define patterns that tell the computer where to split

the text.

In simple terms:

Tokenization = breaking text into tokens (words or sentences) using rules or patterns.

Why Use Regular Expressions for Tokenization?

Regular expressions give more control and flexibility compared to simple splitting (like

split() in Python).

 split() just divides on spaces.

 But regex can handle punctuation, numbers, contractions, etc.

 It’s especially useful for complex text like social media data, reviews, or web

content.

Simple Word Tokenization Using Regex

Let’s split a sentence into words using a simple regex pattern.

OUTPUT

\b\w+\b means:

 \b → word boundary

 \w+ → one or more word characters (letters, digits, underscore)

Segmentation in NLP

1. Introduction

In Natural Language Processing (NLP), segmentation refers to the process of dividing

text into meaningful units, like:

 Sentences → Sentence Segmentation (or Sentence Boundary Detection)

 Words → Word Segmentation

Segmentation is an important preprocessing step because many NLP tasks (like

tokenization, parsing, and machine translation) require text to be in smaller, meaningful

units.

Types of Segmentation

(a) Sentence Segmentation

Dividing text into sentences.

Challenges:

 Punctuation ambiguity (e.g., Dr. Smith is here. → Dr. is not the end of a

sentence)

 Abbreviations, decimal points, URLs

Example using regex:

OUTPUT

Explanation:

 (?<=[.!?])\s+ → split at spaces after a period, exclamation, or question mark.

Example using NLTK:

OUTPUT

(b) Word Segmentation

Dividing a sentence into words (or tokens).

Example using regex:

OUTPUT

Example using NLTK:

OUTPUT

Notice that word_tokenize keeps punctuation as separate tokens.

Special Cases in Segmentation

1. Languages without spaces
o Example: Chinese, Japanese

o Words are not separated by spaces, so word segmentation requires

dictionary-based or statistical methods.

2. URLs, Emails, Hashtags, Emojis
o These require custom tokenization rules to avoid splitting in the middle.

3. Abbreviations

o Example: U.S.A. → shouldn’t split at every period.

Why Segmentation is Important

 It allows accurate tokenization

 It’s crucial for POS tagging, parsing, and translation

 Helps in information retrieval and text analytics

Formatting: From Lists to Strings in NLP

1. Introduction

In NLP, after tokenizing text, we often have lists of words or tokens.

Sometimes, we need to convert these lists back into readable text for output, display,

or further processing. This process is called formatting lists into strings.

Why It‘s Useful

 Joining tokenized words back into sentences.

 Preparing text for storage, display, or machine learning models.

 Combining outputs from preprocessing steps like tokenization, stemming, or

lemmatization.

Converting Lists to Strings Using join()

The most common way in Python is using the join() method.

OUTPUT

' '.join(words) joins the words with a space between them.

Joining with Other Separators

You can use commas, hyphens, or other characters instead of spaces.

OUTPUT

Handling Punctuation Properly

Sometimes tokenization separates punctuation from words.

We may want to join them without extra spaces.

OUTPUT

Hello, world!

From Nested Lists to Strings

Sometimes, text may be in nested lists, like paragraphs of tokenized sentences.

OUTPUT

Categorizing and Tagging Words

In Natural Language Processing (NLP), categorizing and tagging words means

assigning a grammatical or semantic label to each word in a sentence.

This helps the computer understand the role each word plays — whether it’s a noun,

verb, adjective, etc.

 This process is called Part-of-Speech (POS) Tagging.

Why Is Tagging Important?

Tagging is used in many NLP applications such as:

 Text classification

 Named Entity Recognition (NER)

 Machine translation

 Speech recognition

 Question answering

It allows the computer to ―understand‖ how words are functioning in a sentence.

Example:

Sentence: “The cat sat on the mat.”

Tags:

 The → Determiner (DT)

 cat → Noun (NN)

 sat → Verb (VBD)

 on → Preposition (IN)

 the → Determiner (DT)

 mat → Noun (NN)

What Is a Tagger?
 A Tagger is an NLP tool or algorithm that automatically assigns tags to words

based on their context and grammar.

 It takes a sentence as input and returns a list of (word, tag) pairs as output.

Types of Taggers

(a) Rule-Based Taggers

 Use handwritten grammatical rules to assign tags.

 Example: If a word ends with ―-ed,‖ it is likely a past tense verb (VBD).

 Example tool: ENGCG (English Constraint Grammar)

(b) Stochastic Taggers (Statistical Taggers)

 Use probability and statistics based on a trained corpus.

 Example methods:

o Hidden Markov Model (HMM) Tagger

o N-gram Tagger

These taggers predict the most likely tag based on the previous tags and word

frequencies.

(c) Transformation-Based Taggers

 Also known as Brill Tagger.

 Starts with simple tagging (e.g., most frequent tag) and learns transformation

rules to improve accuracy based on errors.

(d) Neural Network Taggers

 Use Deep Learning models (e.g., BiLSTM, CRF, Transformers).

 These capture contextual meaning of words more accurately.

 Example: BERT, spaCy, or NLTK‘s neural taggers.

Example Using NLTK (Python)

Here’s how tagging works programmatically

OUTPUT

Each pair (word, tag) shows the category assigned by the tagger.

Common POS Tags (Penn Treebank Tagset)

Tag Meaning Example

NN Noun (singular) book

NNS Noun (plural) books

VB Verb (base form) eat

VBD Verb (past tense) ate

JJ Adjective beautiful

RB Adverb quickly

PRP Pronoun he, she

IN Preposition on, at

DT Determiner the, a

Tagged Corpora (Definition)

A Tagged Corpus (plural: Corpora) is a collection of text where each word is

annotated (tagged) with its part of speech (POS) or other linguistic information.

In simple words:
A tagged corpus = Text + Tags

Example

Word Tag

The DT

cat NN

sat VBD

on IN

the DT

mat NN

Purpose of Tagged Corpora

Tagged corpora are used to:

1. Train POS Taggers — taggers learn patterns of how words and tags co-occur.

2. Evaluate NLP models — used as a benchmark to check tagging accuracy.

3. Linguistic analysis — to study grammar, syntax, and word usage in real

language.

Types of Tagged Corpora

1. Part-of-Speech (POS) Tagged Corpora

Each word is tagged with its grammatical category.

Example (NLTK Brown Corpus):

"The/DT cat/NN sat/VBD on/IN the/DT mat/NN ./."

2. Morphologically Tagged Corpora

Each word is tagged with morphological features, such as:

 Tense (past/present)

 Number (singular/plural)

 Gender (masculine/feminine)

Example:

―sat‖ → Verb, Past Tense

―cats‖ → Noun, Plural

3. Syntactically Tagged Corpora (Parsed Corpora)

 Contain phrase structure or dependency structure information.

 Used for parsing and grammar learning.

Example (Parse tree):

4. Semantically Tagged Corpora

 Words are tagged with semantic roles or meanings (like ―Agent‖, ―Action‖,

―Object‖).

 Used in Semantic Role Labeling (SRL) and information extraction.

Example:

―Ram ate an apple.‖

→ Ram (Agent), ate (Action), apple (Object)

Examples of Famous Tagged Corpora

Corpus Name Description Language

Brown Corpus
First large-scale tagged corpus (1

million words)
English

Penn Treebank
POS + syntactic annotations, widely

used
English

Wall Street Journal (WSJ)

Corpus
Subset of Penn Treebank English

TIMIT Tagged with phonetic and speech data English

Corpus Name Description Language

Indian Languages Corpora

Initiative (ILCI)

Multilingual corpus (Hindi, Tamil,

etc.)

Indian

Languages

Universal Dependencies (UD)
Cross-linguistic tagged corpus with

syntactic & POS info
Multiple

Tagged Corpora in NLTK

NLTK (Natural Language Toolkit) provides many tagged corpora you can use for

training or testing taggers.

Example:

OUTPUT

[('The', 'AT'), ('Fulton', 'NP-TL'), ('County', 'NN-TL'), ('Grand', 'JJ-TL'), ('Jury',

'NN-TL'), ('said', 'VBD'), ...]

How Tagged Corpora Are Used

Step Purpose

1. Collect text data Large samples of written/spoken language

2. Annotate words Linguists or algorithms add tags

3. Train taggers Machine Learning models learn from these patterns

4. Test accuracy Compare predicted tags with tagged corpus

5. Apply to real data Use taggers on untagged sentences

Mapping Words to Properties Using Python Dictionaries

This concept connects linguistic data (words) with their associated features or

properties — and Python dictionaries are the perfect structure for this.

1. What Does ―Mapping Words to Properties‖ Mean?

In Natural Language Processing (NLP), we often need to store information about

words — such as:

 Their Part of Speech (POS)

 Lemma (base form)

 Meaning or Synonym

 Frequency
 Word Category (noun, verb, adjective)

 Semantic information (like sentiment, domain, etc.)

To do this efficiently, we map each word to its properties using a dictionary, where:

Key = Word

Value = Property/Properties

Example:

Output:

Verb

Why Use Dictionaries in NLP?

Python dictionaries provide:

 Fast lookups → O(1) access time

 Structured storage for linguistic attributes

 Flexibility → can store multiple features per word

Real-World Uses of Word-to-Property Mapping

Application Description

POS Tagging Store which tag each word gets (NN, VB, etc.)

Lemmatization Map inflected forms → base form (e.g., ―ran‖ → ―run‖)

Word Sense Disambiguation
Store different meanings (e.g., ―bank‖ = river side or

financial institution)

Sentiment Analysis Map words to polarity (positive/negative)

Named Entity Recognition

(NER)
Map words to entity type (Person, Location, Organization)

Example: Lemmatization Mapping

Output

Automatic Tagging

What Is Automatic Tagging?

In Natural Language Processing (NLP), Automatic Tagging means assigning tags

(like parts of speech, named entities, etc.) to words automatically using algorithms

or trained models — without manual human labeling.

It’s the process of letting the computer decide the grammatical or semantic role of

each word based on rules, statistics, or machine learning.

Example

Input Sentence:

―The cat sat on the mat.‖

Automatic Tagger Output:

Here, the tagger automatically labeled each word with its Part of Speech

(POS) tag.

How Automatic Tagging Works

Automatic tagging systems use different methods depending on complexity:

Step-by-step process:

1. Input Sentence → ―She is playing football.‖

2. Tokenization → ["She", "is", "playing", "football", "."]

3. Model checks each word:

o Looks up word in a dictionary or corpus.

o Checks surrounding words (context).

o Predicts the most likely tag.

4. Output → [('She', 'PRP'), ('is', 'VBZ'), ('playing', 'VBG'),
('football', 'NN'), ('.', '.')]

Approaches to Automatic Tagging

There are three major approaches to automatic tagging:

A. Rule-Based Tagging

 Uses handcrafted grammatical rules and lexicons.

 Example rules:

o If a word ends with ―-ed‖, tag it as past tense verb (VBD).

o If a word comes after a determiner (DT), tag it as noun (NN).

Example:

Pros: Accurate for small, grammatically clean datasets.

Cons: Hard to scale; requires expert rules.

B. Statistical Tagging (Probabilistic Tagging)

Uses statistics and probabilities learned from a tagged corpus (like Brown or Penn

Treebank).

 Most common: Hidden Markov Model (HMM) or N-Gram Taggers.

 Each word is tagged based on the probability of a tag given the word and its

context.

Formula (simplified):

Example:
If in training data:

 ―sat‖ appears as a verb (VBD) 95% of the time,

then the tagger will likely assign ―sat → VBD‖.

Pros: Learns from real data.

Cons: Needs a large tagged corpus.

C. Machine Learning / Neural Network Tagging

Modern NLP uses deep learning models like:

 BiLSTM (Bidirectional LSTM)

 CRF (Conditional Random Fields)

 Transformer models (BERT, RoBERTa, etc.)

These models learn contextual patterns from millions of examples — so they can

understand that:

―book‖ in ―I will book a ticket‖ → verb

―book‖ in ―I read a book‖ → noun

Pros: Very accurate, handles ambiguity

Cons: Needs computational resources and training data.

Example Using NLTK (Python)

Output

This is Automatic Tagging in action — done using NLTK‘s pre-trained

tagger (Averaged Perceptron Tagger).

Automatic Tagger Types in NLTK

Tagger Description

DefaultTagger Assigns a single default tag to all words (e.g., NN)

RegexTagger Uses regular expressions for rule-based tagging

UnigramTagger
Assigns tag based on most common tag of the word (from

corpus)

Bigram/TrigramTagger Considers previous one/two tags for context

BrillTagger Transformation-based learner (hybrid of rule & statistics)

Advantages of Automatic Tagging

� Saves time (vs manual tagging)

� Scalable to millions of words

� Improves consistency

� Can adapt to new languages with training

� Used in most real-world NLP systems

Challenges / Limitations

� Ambiguity — words like “bank” (river bank or financial bank)

� Unknown words — words not seen in training data

� Context sensitivity — ―light rain‖ (adjective) vs ―light the lamp‖ (verb)

N-Gram Tagging

What Is N-Gram Tagging?

N-Gram Tagging is a statistical approach to automatic tagging in NLP.

It assigns Part-of-Speech (POS) tags to words based on the tag(s) of the previous

(N−1) word(s) in a sentence.

In simple terms:

An N-Gram Tagger uses context — the tags of nearby words — to predict the correct

tag for the current word.

It’s based on the idea that the tag of a word depends not only on the word itself but also

on the tags of surrounding words.

What Is an N-Gram?

An N-Gram is a sequence of N items (words or tags) that appear together.

N Example
Called

As

1 ―cat‖ Unigram

2 ―the cat‖ Bigram

3
 ―the black

cat‖
Trigram

In tagging, we use tag sequences instead of word sequences:

 Unigram Tagger → Uses only the current word

 Bigram Tagger → Uses previous word‘s tag

 Trigram Tagger → Uses previous two tags

How N-Gram Tagging Works

Step-by-step process:

Let’s take a simple sentence:

―The cat sat on the mat‖

1. Training Phase
o The tagger is trained on a tagged corpus (e.g., Brown or Penn Treebank).

o It learns how likely a certain tag sequence occurs.

o For example:

 P(NN | DT) = Probability of a Noun (NN) coming after a

Determiner (DT).

 P(VBD | NN) = Probability of a Past Tense Verb after a Noun.

2. Tagging Phase
o For each new word, the model selects the tag with the highest probability,

given the previous (N−1) tags.

Example of Bigram Tagging:

Word Possible Tags Previous Tag Selected Tag

The DT — DT

cat NN, VB DT NN (since NN follows DT often)

sat NN, VBD NN VBD (verb likely after noun)

on IN VBD IN

the DT IN DT

mat NN DT NN

Final Output:

[('The', 'DT'), ('cat', 'NN'), ('sat', 'VBD'), ('on', 'IN'), ('the',

'DT'), ('mat', 'NN')]

N-Gram Tagging in NLTK

NLTK provides built-in taggers for unigram, bigram, and trigram tagging.

Example Code:

OUTPUT

Comparison of N-Gram Taggers

Type Uses Pros Cons

Unigram Tagger Only current word Fast, simple Ignores context

Bigram Tagger Current + previous tag Context-aware Fails with unseen pairs

Trigram Tagger Current + previous two tags More context Needs lots of data

Example Comparison

Sentence: ―Time flies like an arrow‖

Word Unigram Bigram Trigram

Time NN NN NN

flies NNS VBZ VBZ

like IN IN IN

an DT DT DT

arrow NN NN NN

Here, the Bigram/Trigram taggers help correctly identify “flies” as a verb

(VBZ), not a noun (NNS), because of context.

Applications of N-Gram Tagging

 Part-of-Speech Tagging

 Named Entity Recognition (NER)

 Speech Recognition

 Spell Correction

 Text Prediction and Autocomplete

Transformation-Based Tagging (TBL) — also known as

Brill Tagging

Transformation-Based Tagging is a rule-based approach to Part-of-Speech (POS)

tagging in Natural Language Processing (NLP).

It was introduced by Eric Brill (1995) and is one of the most famous hybrid methods

because it combines both statistical and rule-based approaches.

Idea Behind TBL

 Instead of directly assigning the best possible tag using probabilities (like HMMs

or n-grams),

TBL starts with an initial (baseline) tagging and gradually improves it by

learning a sequence of transformation rules.

 These rules correct errors in the initial tagging step-by-step.

How Transformation-Based Tagging Works

1. Initialization (Baseline Tagging)
o Start by giving each word its most likely tag (for example, using unigram

statistics — the most frequent tag for each word in the training corpus).

o Unknown words may get a default tag like ‗NN‘ (noun).

Example:

2. Learning Transformation Rules

 The system compares the current tags with the correct tags (from a tagged

corpus).

 It identifies errors and learns rules that can correct them.

 Each rule has the form:

―Change tag A to tag B when condition C is true.‖

Example Rules:

 Change NN → VB if the word is preceded by ‗to‘

 Change VBD → VBN if the word ends with ‗-ed‘

3. Applying the Rules

 The learned transformation rules are applied sequentially to improve tagging

accuracy.

 Each rule is applied only if it reduces the total number of errors.

4. Final Output

 After applying all rules, the output tags are much more accurate than the initial

ones.

Example

Suppose we have:

Advantages

 Combines accuracy of statistical models and interpretability of rule-based

systems.

 Rules are human-readable, making debugging and analysis easier.

 Performs well even with moderate-sized corpora.

Disadvantages

 Training is slow (many rule evaluations).

 Sequential dependency — later rules depend on earlier ones.

 May not perform as well as deep learning models on very large datasets.

In NLTK (Python Example)

This runs a demonstration showing how transformation rules are learned and applied in

NLTK.

How to Determine the Category of a Word (Part-of-

Speech Tagging in NLP)

In Natural Language Processing (NLP), determining the category of a word means

identifying its part of speech (POS) — for example, whether a word is a noun, verb,

adjective, adverb, etc.

This process is known as POS tagging or word categorization.

What is Word Category?

Each word in a sentence belongs to a syntactic category (also called a grammatical

category or part of speech).

Examples include:

 Noun (NN) → person, place, thing — dog, book, India

 Verb (VB) → action or state — run, eat, is

 Adjective (JJ) → describes a noun — happy, blue, tall

 Adverb (RB) → modifies verbs or adjectives — quickly, very

 Preposition (IN) → shows relationship — in, on, under

 Determiner (DT) → specifies a noun — the, a, some

 Pronoun (PRP) → replaces a noun — he, she, it

Methods to Determine the Category of a Word

There are four main methods used in NLP to determine a word’s category:

1.Lexical Lookup (Dictionary-Based Tagging)

Each word is looked up in a lexicon (dictionary) that lists words and their possible

categories.

Example:

Word Possible Categories

book NN (noun), VB (verb)

play VB (verb), NN (noun)

Limitation:

Many words are ambiguous — they can belong to multiple categories depending on
context (e.g., “book a ticket” vs “read a book”).

2.Rule-Based Tagging

This method applies grammatical rules and context to assign the correct tag.

Example Rules:

 If a word ends with -ly, tag it as an adverb (RB) → quickly, slowly

 If a word comes before a noun, tag it as an adjective (JJ) → beautiful flower

 If a word comes after a determiner (the, a), tag it as a noun (NN) → the cat

Example:

3.Statistical (Probabilistic) Tagging

Uses probability models trained on large, manually tagged corpora to predict the most

likely tag for each word in context.

Examples:

 Unigram Tagger: assigns the most frequent tag for a word.

 Bigram / Trigram Tagger: uses the tag(s) of the previous one or two words to

predict the current tag.

 Hidden Markov Model (HMM) Tagger: uses both emission and transition

probabilities.

 Neural Taggers (e.g., BiLSTM, BERT): use deep learning to capture complex

word and sentence patterns.

Example:

"I saw her duck."

 Unigram tagger: may tag duck as NN (noun)

 Context-aware tagger: may tag duck as VB (verb) depending on context (―her

duck to avoid something‖).

4.Combined (Hybrid) Tagging

Modern NLP systems (like NLTK’s pos_tag() or spaCy) combine:

 Lexical dictionaries,

 Statistical models,

 And sometimes neural networks

to achieve high accuracy.

Example in Python (Using NLTK)

OUTPUT

Summary Table

Method Description Example

Lexical Lookup Dictionary lookup book → NN/VB

Rule-Based Uses grammar rules word ending with -ly → RB

Statistical Uses probabilities from data HMM, n-gram models

Neural / Hybrid Uses deep learning + context BERT, spaCy, etc.

UNIT – 3

What is Text Classification?

Text classification is the process of assigning predefined categories or labels to text

documents.

Examples:

 Spam detection → spam / not spam

 Sentiment analysis → positive / negative / neutral

 News categorization → sports / politics / tech / business

Supervised Classification

Concept:

In supervised learning, the model is trained using a labeled dataset, i.e., data where

each text is already tagged with its correct category.

Example training data:

Text Label

―Great movie, I loved it‖ Positive

―Worst film ever‖ Negative

The algorithm learns patterns from these examples to classify new unseen text.

Steps in Supervised Text Classification:

1. Data Collection: Gather text samples and their labels.

2. Preprocessing:
o Tokenization

o Lowercasing

o Removing stopwords

o Stemming/Lemmatization

3. Feature Extraction:
Convert text into numerical form (vectors) using techniques like:

o Bag of Words (BoW)

o TF-IDF (Term Frequency–Inverse Document Frequency)

o Word Embeddings (Word2Vec, GloVe)
4. Model Training: Train a classifier (e.g., Naive Bayes, Logistic Regression,

SVM).

5. Prediction: Classify new, unseen texts.

6. Evaluation: Measure accuracy and performance.

Evaluation of Classifiers

To test how well the model performs, we use evaluation metrics on test data (data not

seen during training).

Confusion Matrix

 Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

Metrics:

 Accuracy = (TP + TN) / (TP + TN + FP + FN)

→ Overall correctness.

 Precision = TP / (TP + FP)

→ Out of predicted positives, how many were correct.

 Recall = TP / (TP + FN)

→ Out of actual positives, how many were identified correctly.

 F1-Score = 2 × (Precision × Recall) / (Precision + Recall)

→ Harmonic mean of precision and recall.

Naive Bayes Classifiers

Naive Bayes is a probabilistic classifier based on Bayes‘ Theorem, assuming that all

features (words) are independent of each other (hence ―naive‖).

Bayes‘ Theorem:

Working Example:

Let’s classify a new sentence — ―This movie is great.‖

We calculate:

Whichever is higher, that label is assigned.

Types of Naive Bayes:

1. Multinomial NB: Used for word counts (common for text classification).

2. Bernoulli NB: For binary features (word present/absent).

3. Gaussian NB: For continuous data (not common in NLP).

Example (Python-like Logic):

Advantages:

 Simple and fast to train.

 Works well with small datasets.

 Performs surprisingly well for text classification.

 Limitations:

 Assumes word independence (not true in real language).

 Cannot handle very complex relationships between words.

Deep Learning for NLP – Introduction

What is Deep Learning?

Deep Learning (DL) is a branch of Machine Learning (ML) that uses artificial neural

networks (ANNs) with many hidden layers (hence ―deep‖) to automatically learn

representations (features) from raw data.

In NLP, Deep Learning helps machines understand and generate human language —

text, speech, and meaning — by learning from large text datasets.

Why Deep Learning for NLP?

Traditional NLP methods (like Bag-of-Words, TF-IDF, or Naive Bayes) rely on

handcrafted features, which often:

 Ignore word order and context.

 Struggle with large, complex datasets.

Deep Learning solves these by:

� Learning features automatically from data.

� Capturing semantic meaning (context, relationships, grammar).

� Handling complex tasks like translation, summarization, and chatbots.

Neural Networks: The Foundation

Basic Structure:

A neural network consists of:

1. Input Layer – Takes data (e.g., word vectors).

2. Hidden Layers – Process features through weighted connections.

3. Output Layer – Gives final prediction (e.g., sentiment = positive/negative).

Each connection has a weight (w), and neurons use an activation function to introduce

non-linearity.

Activation Functions:

They help the network learn complex relationships.

How a Neural Network Learns:

1. Forward Propagation: Compute output using weights.

2. Loss Function: Compare output with true label (error).

3. Backward Propagation: Adjust weights to reduce error (using gradient descent).

This iterative process continues until the model’s performance improves.

Deep Learning in NLP Tasks

Deep Learning models can handle various NLP tasks such as:

Task Example Model Type

Sentiment Analysis Positive / Negative review CNN / RNN

Text Classification Spam / Not Spam CNN / RNN

Machine Translation English → French Seq2Seq (RNN)

Named Entity Recognition
―John lives in Delhi‖ → (Person,

Location)
Bi-LSTM

Chatbots / Question

Answering
Conversational AI

Transformer (GPT,

BERT)

Word Representation: Word Embeddings

Before feeding text into neural networks, we must convert words into numbers.

Word Embedding:

A dense numerical vector that represents a word’s meaning and context.

Example:

―king‖, ―queen‖, ―man‖, ―woman‖ → vectors close in space if meanings are related.

Common Techniques:

 Word2Vec – Learns vector representations from text.

 GloVe (Global Vectors) – Uses co-occurrence statistics.

 FastText – Considers subword (character-level) information.

These embeddings are the input features for deep learning models.

Advantages of Deep Learning in NLP

� Automatically learns features (no manual feature engineering).

� Handles large-scale data efficiently.

� Understands context and sequence of words.

� Provides state-of-the-art accuracy for NLP tasks.

Limitations

� Requires large datasets and computational power.

� Harder to interpret (black box nature).

� Training can be slow.

� Needs GPU/TPU for high performance.

Simple Example Workflow:

Convolutional Neural Networks (CNNs)

Introduction:

A Convolutional Neural Network (CNN) is a deep learning model originally designed

for image processing, but it also works very well for text classification and NLP tasks.

CNNs can automatically extract important local features (like key phrases or n-grams)

from text without requiring manual feature engineering.

Basic Idea

CNNs use a special operation called convolution, which slides small filters (kernels)

across input data to detect important patterns.

In text, this means:

 Detecting key word patterns (e.g., ―not good‖, ―very bad‖)

 Capturing local dependencies between nearby words

CNN Architecture for NLP

Let’s go step-by-step

 Step 1 – Input Layer

The input is a sequence of words, usually converted into word embeddings.

Example sentence:

―The movie was really good‖

After embedding (say 5 words × 50-dim vector):

→ A 5 × 50 matrix (rows = words, columns = embedding dimensions)

Step 2 – Convolution Layer

 Apply filters (kernels) that slide over the word embeddings.

 Each filter detects a specific pattern of nearby words (like a phrase).

Example:

 A filter size of 2 → detects 2-word patterns (―movie was‖, ―was really‖)

 A filter size of 3 → detects 3-word patterns (―The movie was‖)

Each filter produces a feature map — a numerical representation of detected patterns.

Step 3 – Activation Function

After convolution, an activation function (usually ReLU) is applied to add non-linearity.

This allows the model to learn complex relationships.

Step 4 – Pooling Layer

Pooling reduces the feature map’s size while keeping the most important information.

 Max Pooling: Takes the largest value (most important feature).

 Average Pooling: Takes the average of the region.

For NLP, 1D Max Pooling is most common — it helps capture the strongest feature from

each filter.

 Step 5 – Fully Connected Layer

The pooled features are flattened into a vector and passed through one or more fully

connected (Dense) layers for final prediction.

Step 6 – Output Layer

Uses Softmax (for multi-class) or Sigmoid (for binary classification).

Example:

 Sentiment → Positive / Negative

 News category → Sports / Politics / Tech

Example CNN Architecture for Text Classification

Simple Python Example

Advantages of CNN in NLP

� Captures local patterns (n-grams) efficiently.

� Fast training (parallel computation possible).

� Works well with short and fixed-length texts.

� Needs fewer parameters than RNNs.

Limitations

� Cannot easily capture long-range dependencies between distant words.

� Not ideal for sequential context understanding (for that, use RNNs or Transformers).

Recurrent Neural Networks (RNNs)

Introduction:

A Recurrent Neural Network (RNN) is a deep learning model designed to handle

sequential data, where the order of input matters — like text, speech, or time series.

Unlike normal neural networks (which treat each input independently), RNNs have a

memory that captures information from previous inputs.

That makes RNNs ideal for Natural Language Processing (NLP) tasks such as:

 Sentence classification

 Machine translation

 Text generation

 Speech recognition

The Need for RNNs in NLP

Text is sequential — the meaning of a word depends on previous words.

Example:

―He went to the bank to deposit money.‖

―He sat on the bank of the river.‖

The word “bank” has different meanings depending on the previous words.

 So, we need a model that can remember past context — that’s what RNNs do.

Basic Working

An RNN processes an input sequence one element (word) at a time, while maintaining a

hidden state that stores information about previous steps.

Recurrent Connection

The key feature:

The hidden state hth_tht depends on both current input and previous state ht−1h_{t-

1}ht−1.

That’s why it’s called ―recurrent‖ — the network loops over time steps.

Unfolded RNN Representation

Each RNN cell passes its hidden state to the next — maintaining sequential

memory.

Types of RNNs

Type Description Example Use

One-to-One Standard NN Image classification

One-to-Many One input → Sequence output Image captioning

Many-to-One Sequence input → One output Sentiment analysis

Many-to-Many
Sequence input → Sequence

output

Translation, Speech

recognition

Problems with Basic RNNs

Vanishing Gradient Problem:

When training long sequences, gradients (error signals) become very small —

the model forgets long-term dependencies.

Hence, basic RNNs are not good at remembering context far back in the sequence.

Solutions: LSTM and GRU

To fix memory loss, two advanced RNN variants were introduced:

LSTM (Long Short-Term Memory):

 Uses gates (input, forget, output) to control information flow.

 Can remember information for longer sequences.

GRU (Gated Recurrent Unit):

 A simplified LSTM with fewer gates (update and reset).

 Faster to train, performs similarly well.

Applications

Task Example

Sentiment Analysis
Predict positive/negative

review

Text Generation
Generate new sentences

or poetry

Machine Translation English → French

Named Entity Recognition (NER)
Detect names, places,

etc.

Speech Recognition Convert audio → text

Example RNN Architecture in Python

Advantages of RNNs

� Can handle sequential data and context.

� Useful for variable-length inputs.

� Effective in NLP tasks like translation and speech.

Limitations

� Difficult to train on long sequences (vanishing gradient).

� Slow (can’t be fully parallelized).

� Forget distant context.

(Solved by LSTM and GRU, and later by Transformers)

Classifying Text with Deep Learning

What Is Text Classification?

Text classification is the process of assigning a label or category to a given text using

machine learning or deep learning techniques.

Examples:

 Spam Detection → Spam / Not Spam

 Sentiment Analysis → Positive / Negative

 News Categorization → Sports / Politics / Tech

 Intent Detection → Booking / Inquiry / Complaint

Why Deep Learning for Text Classification?

Traditional ML models (Naive Bayes, SVM, Logistic Regression) rely on hand-crafted

features such as Bag-of-Words or TF-IDF.

These fail to capture:

 Context between words

 Word order

 Long-range dependencies

Deep Learning models (CNNs, RNNs, LSTMs, Transformers) solve this by

automatically learning hierarchical and contextual features from text.

Deep Learning Workflow for Text Classification

Let’s go step-by-step

 Step 1 – Data Preparation

 Collect labeled dataset (text + label).

 Example:

Text Label

―The movie was excellent‖ Positive

―I hated the acting‖ Negative

 Clean text (remove punctuation, lowercase, etc.).

 Split into training and test sets.

Step 2 – Text Representation

Convert text into numerical form using:

 Word Embeddings (Word2Vec, GloVe, FastText)

 Or use Embedding Layer in deep learning frameworks like TensorFlow/Keras.

Each word becomes a dense vector (e.g., 100 dimensions) capturing its meaning.

Step 3 – Model Selection

Depending on the nature of your data, choose a deep learning model:

Model Strength Typical Use

CNN Captures local n-gram patterns
Short text / phrase

classification

RNN / LSTM / GRU Captures sequential context
Long sentences / time-based

data

Hybrid CNN + LSTM
Combines local + sequential

features
Sentiment analysis, reviews

Transformers (BERT,

GPT)

Captures global attention &

context
State-of-the-art NLP tasks

Step 4 – Training the Model

1. Feed word embeddings into the network.

2. Network learns to map patterns → labels.

3. Use loss function like Binary Cross-Entropy or Categorical Cross-Entropy.

4. Optimize weights via backpropagation using optimizers like Adam or SGD.

Step 5 – Evaluation

After training, evaluate performance on the test set using:

 Accuracy

 Precision

 Recall

 F1-Score

Example: CNN-Based Text Classifier

Used for binary classification (e.g., positive vs. negative).

Example: LSTM-Based Text Classifier

Used for longer text or sequence-dependent tasks.

Advanced Approach: Transformers

Modern models like BERT, RoBERTa, and GPT use self-attention to understand

relationships between all words in a sentence simultaneously.

They achieve state-of-the-art accuracy in most NLP classification tasks.

Example task:

BERT fine-tuned for sentiment analysis or spam detection.

Advantages of Deep Learning for Text Classification

� Learns complex patterns automatically.

� Captures context and sequence of words.

� Performs better on large datasets.

� Can be fine-tuned for domain-specific tasks.

Limitations

� Requires large labeled datasets.

� High computational cost (needs GPU).

� Longer training time.

� Harder to interpret (―black box‖ models).

UNIT – 4

Information Extraction (IE): Overview

Definition:
Information Extraction (IE) is the process of automatically identifying structured

information (facts, entities, relationships) from unstructured text data such as articles,

blogs, reviews, or social media posts.

In simple words —

IE converts raw text into structured data that computers can understand and use.

Example

Input (Unstructured Text):

"Elon Musk founded SpaceX in 2002 and became the CEO of Tesla in 2008."

Output (Structured Information):

Entity 1 Relation Entity 2 Date

Elon Musk founded SpaceX 2002

Elon Musk became CEO of Tesla 2008

Steps in Information Extraction

1. Text Preprocessing
o Tokenization (splitting into words/sentences)

o Stopword removal

o Lemmatization or Stemming

2. Part-of-Speech (POS) Tagging
o Identifies the grammatical role of words (noun, verb, adjective, etc.)

3. Named Entity Recognition (NER)
o Finds names of persons, organizations, locations, dates, etc.

o Example: ―Apple‖ → Organization, ―Tim Cook‖ → Person

4. Chunking / Shallow Parsing
o Groups words into phrases (like Noun Phrases or Verb Phrases)

o Example: ―the red car‖ → [NP the red car]

5. Relation Extraction
o Determines relationships between entities (e.g., works for, located in,

founded by).

6. Template Filling
o Extracted entities and relations are placed into predefined templates or

structured formats.

Applications of Information Extraction

 Search Engines – Extract key facts for quick answers.

 Question Answering Systems – e.g., Chatbots using structured info.

 Business Intelligence – Extract company, product, and price data.

 Social Media Monitoring – Identify opinions, trends, or named entities.

 Medical Text Mining – Extract disease, drug, and symptom relationships.

Techniques Used

Method Description

Rule-Based Systems Use hand-written patterns or regex (e.g., ―founded by‖)

Statistical Models Use machine learning with annotated data

Deep Learning

Models

Use neural networks (e.g., BiLSTM, BERT) for NER and relation

extraction

What is Chunking?

Definition:
Chunking (also called shallow parsing) is the process of grouping words into

meaningful phrases (like noun phrases or verb phrases) based on their Part-of-Speech

(POS) tags.

While POS tagging labels individual words, chunking combines them into higher-level

units.

Example

Sentence:

―The quick brown fox jumps over the lazy dog.‖

POS Tags:

The/DT quick/JJ brown/JJ fox/NN jumps/VBZ over/IN the/DT lazy/JJ dog/NN

Noun Phrase (NP) Chunking Output:

[NP The quick brown fox] [VP jumps] [PP over] [NP the lazy dog]

Purpose of Chunking

Chunking helps extract structured information by:

 Identifying phrases (like subjects, objects, etc.)

 Simplifying sentence structure for further tasks

 Preparing text for Named Entity Recognition (NER) or Relation Extraction

Types of Chunks

Type Example Description

NP (Noun Phrase) The red car A noun with its modifiers

VP (Verb Phrase) is running fast Verb with adverbs or auxiliaries

PP (Prepositional Phrase) in the park Preposition with a noun phrase

ADJP (Adjective Phrase) very beautiful Adjectives with modifiers

Chunking Process

1. Tokenization → Break text into words

2. POS Tagging → Assign parts of speech

3. Apply Chunking Rules → Define patterns using regular expressions based on

POS tags

4. Chunk Extraction → Identify and group phrases

Example in Python (using NLTK)

This will show a tree structure grouping the words into a noun phrase (NP).

Evaluating Chunkers

When you train a chunker using annotated data, you can evaluate its

performance using:

Metric Description

Precision % of correctly predicted chunks out of all predicted chunks

Recall % of correctly predicted chunks out of all actual chunks

F1 Score Harmonic mean of precision and recall

Chunking vs Parsing

Aspect Chunking Full Parsing

Depth Shallow (phrases only) Deep (full grammatical structure)

Speed Fast Slower

Purpose Identify key groups (NP, VP) Understand full syntax tree

Applications

 Information Extraction (e.g., identifying ―organization names‖)

 Named Entity Recognition (NER)

 Question Answering Systems

 Machine Translation

 Text Summarization

What is a Chunker?

A chunker is a model or a rule-based system that automatically detects and groups

phrases (like noun phrases, verb phrases) in a sentence after POS tagging.

In short:

Chunking = POS tagging + Pattern recognition for phrases

You can develop a chunker using:

 Rule-based (Grammar/Regex) approach

 Machine learning-based approach (trained chunkers)

Developing a Chunker

There are two main ways:

A. Rule-Based Chunker (Using Regular Expressions)

We define patterns using POS tags to identify chunks.

Example:

Explanation:

 <DT>? → Optional Determiner (like the, a, an)

 <JJ>* → Zero or more adjectives

 <NN> → Noun

So this rule captures noun phrases like “The beautiful red car”.

B. Machine Learning-Based Chunker

Uses supervised learning — you train a model with:

 Input: POS-tagged sentences

 Output: Chunk labels (e.g., ―B-NP‖, ―I-NP‖, ―O‖)

Example using NLTK’s built-in dataset:

This type of model learns patterns automatically from annotated corpora like

CONLL 2000.

Evaluating Chunkers

Once a chunker is developed, its performance must be evaluated on a test set.

Evaluation Metrics:

Evaluating in NLTK

OUTPUT

Importance of Evaluation

 Helps measure accuracy and reliability of the chunker.

 Allows comparison between different approaches (rule-based vs ML).

 Ensures robustness for downstream tasks like NER or relation extraction

Recursion in Linguistic Structure

Definition:
In linguistics, recursion means a phrase can contain another phrase of the same type

— this allows language to express infinite ideas with finite rules.

In simple words:

Recursion lets sentences embed smaller sentences or phrases inside themselves.

Example

1. Basic sentence:

―The cat sat.‖

2. Add a phrase (recursion in noun phrase):

―The cat on the mat sat.‖

3. Add another phrase:

―The cat on the mat near the door sat.‖

Here, each noun phrase (―cat‖, ―cat on the mat‖, ―cat on the mat near the door‖) contains

another noun phrase → recursion in structure.

Why Recursion Happens

Language has hierarchical structure — a sentence (S) is made up of phrases (NP, VP,

PP), and those phrases can contain other phrases of the same kind.

For example:

Because NP → NP PP, it allows recursion —
A noun phrase (NP) can contain a prepositional phrase (PP), and that PP

again can contain another NP.

Example Tree

For the sentence:

―The book on the table in the room is mine.‖

Here you can see:

 NP contains a PP

 That PP contains another NP

 That NP again contains another PP

→ recursive pattern!

Importance of Recursion in NLP

Task Role of Recursion

Parsing Helps build hierarchical syntactic trees.

Information Extraction Allows extraction from nested phrases.

Machine Translation Handles nested and dependent clauses correctly.

Question Answering Helps understand embedded questions.

Text Summarization Recognizes main vs subordinate clauses.

Recursion in Grammar Rules (CFG)

In Context-Free Grammars (CFGs) — used in NLP parsers — recursion appears

naturally in rules:

Example:

If the grammar allows a non-terminal (like NP) to appear on both sides of a

rule, it‘s recursive.

Recursion in Programming (Python + NLTK Example)

You can visualize recursive linguistic structure using NLTK‘s parser:

This creates a recursive parse tree — showing nested NP and PP structures.

What is Named Entity Recognition (NER)?

Definition:
Named Entity Recognition (NER) is the process of identifying and classifying named

entities in a text into predefined categories such as person names, organizations,

locations, dates, monetary values, etc.

In simple words —

NER finds real-world objects in text and labels them with their type.

 Example:

Sentence:

―Elon Musk founded SpaceX in 2002 and lives in Texas.‖

NER Output:

Entity Type

Elon Musk PERSON

SpaceX ORGANIZATION

2002 DATE

Texas LOCATION

Steps in Named Entity Recognition

1. Text Preprocessing
o Tokenization

o Stopword Removal

o Lemmatization

2. Part-of-Speech (POS) Tagging
o Identifies grammatical roles (noun, verb, etc.)

3. NER Tagging
o Detects entities and assigns category labels

o e.g., New York → LOCATION, Google → ORGANIZATION

4. Post-Processing
o Merge or refine overlapping entities.

Common Named Entity Types

Category Examples

PERSON Elon Musk, Narendra Modi

ORGANIZATION Google, Gurugram University

LOCATION Delhi, India, Ganga River

DATE/TIME 12th February 2005, 5 PM

MONEY ₹5000, $10 million

Category Examples

PERCENT 25%, 80 percent

PRODUCT iPhone, Tesla Model S

EVENT Olympic Games, World War II

Approaches to NER

A. Rule-Based (Pattern Matching)

 Uses regular expressions and hand-written linguistic rules.

 Example: Words ending with Ltd. → ORGANIZATION

 Works well for simple domains but fails on complex language.

B. Machine Learning-Based

 Train models using labeled corpora (supervised learning).

 Uses features like capitalization, word shape, POS tags, etc.

 Common algorithms:

o Hidden Markov Model (HMM)

o Conditional Random Fields (CRF)

o Support Vector Machines (SVM)

C. Deep Learning-Based (Modern NER)

 Uses neural networks to automatically learn features from text.

 Common architectures:

o BiLSTM + CRF

o CNN + LSTM

o Transformers (BERT, RoBERTa, GPT, etc.)
 Highly accurate and widely used today.

Example in Python (using spaCy)

Output

(GPE = Geopolitical Entity, i.e., country, city, or state)

Applications of NER

Application Example

Information

Extraction
Extract company names, dates, and locations from news articles

Question Answering Identify key entities in user queries

Summarization Highlight people, places, and organizations in summaries

Search Engines Improve relevance by recognizing entity names

Chatbots
Understand entities like names, dates, and locations from user

messages

What is Relation Extraction (RE)?

Definition:
Relation Extraction (RE) is the process of detecting and classifying semantic

relationships between entities identified in a text.

In simple words —

After NER finds who and what,

Relation Extraction finds how they are related.

Example

Sentence:

―Elon Musk founded SpaceX in 2002.‖

From NER:

 Elon Musk → PERSON

 SpaceX → ORGANIZATION

 2002 → DATE

Relation Extraction Output:

Entity 1 Relation Entity 2 Extra Info

Elon Musk founded SpaceX 2002

So, RE helps us capture (Subject, Relation, Object) triplets —

→ (Elon Musk, founded, SpaceX)

Steps in Relation Extraction

1. Preprocessing
o Tokenization, POS tagging, and dependency parsing.

2. Named Entity Recognition (NER)
o Identify entities like PERSON, ORGANIZATION, LOCATION, etc.

3. Relation Detection
o Identify whether a relationship exists between two entities.

4. Relation Classification
o Classify the type of relation (e.g., founded by, born in, located in, etc.).

Types of Relations

Category Example Relation Type

Organizational ―Elon Musk founded SpaceX.‖ founderOf

Geographical ―Taj Mahal is located in Agra.‖ locatedIn

Personal ―Barack Obama is married to Michelle Obama.‖ spouseOf

Professional ―Sundar Pichai is CEO of Google.‖ worksFor

Temporal ―World War II ended in 1945.‖ endedIn

Approaches to Relation Extraction

A. Rule-Based (Pattern Matching)

 Uses manually defined patterns or regular expressions.

 Example rule:

If pattern matches ―X founded Y‖ → Relation = founderOf

Example:

―Steve Jobs founded Apple.‖

→ (Steve Jobs, founderOf, Apple)

� Simple but � fails for complex sentence structures.

B. Supervised Machine Learning

 Uses annotated datasets (text with labeled relations).

 Each entity pair becomes a training example.

 Features used: POS tags, dependency paths, word distance, etc.

 Common algorithms:

o Support Vector Machines (SVM)

o Decision Trees

o Naive Bayes

o Logistic Regression

� More flexible than rules, but � needs large labeled data.

C. Deep Learning / Neural Models

 Automatically learn features from raw text.

 Common architectures:

o CNN (captures local word patterns)

o RNN / LSTM (captures long dependencies)

o Transformer-based models like BERT, RoBERTa

Example:

Sentence: ―Bill Gates founded Microsoft.‖

→ Model output: (Bill Gates, founder_of, Microsoft)

� Very accurate

� Requires high computation and large data.

Relation Extraction Example (using spaCy)

OUTPUT

Applications of Relation Extraction

Field Example

Knowledge Graphs
Build (Entity, Relation, Entity) triples for Google

Knowledge Graph

Question Answering

Systems

―Who founded Tesla?‖ → extract (Elon Musk, founderOf,

Tesla)

Information Retrieval Enhance search by linking related entities

Biomedical NLP Extract relations like (Drug, treats, Disease)

News Analysis Identify relations between people, events, and organizations

Analyzing Sentence Structure

Analyzing sentence structure in NLP means understanding how words are organized

and related in a sentence.

It’s about syntax — the rules and patterns governing how words combine to form

meaningful sentences.

Before extracting meaning, we need to know what role each word plays (subject, verb,

object, modifier, etc.) and how phrases are structured.

Some Grammatical Dilemmas

In natural language, many sentences can be ambiguous or have structures that are

difficult for computers to parse. These are called grammatical dilemmas.

A. Syntactic Ambiguity

 A sentence can have more than one valid parse.

 Example:

―I saw the man with a telescope.‖

Two interpretations:

1. I used a telescope to see the man.

2. The man I saw had a telescope.

 Computers must decide which structure is intended, which is tricky without

context.

B. Part-of-Speech Ambiguity

 A word can have multiple possible POS tags depending on context.

 Example:

―Book the flight.‖ → Book = verb

―The book is on the table.‖ → Book = noun

 NLP systems must disambiguate words based on sentence structure.

C. Attachment Ambiguity

 Ambiguity about which part of the sentence a phrase modifies.

 Example:

―She saw the boy with the binoculars.‖

o Did she have the binoculars?

o Or did the boy have them?

 This is common with prepositional phrases (PPs).

D. Coordination Ambiguity

 Ambiguity in sentences with ―and,‖ ―or,‖ or other conjunctions.

 Example:

―He saw the man and the woman with a telescope.‖

o Does with a telescope modify both man and woman or just woman?

E. Modifier Scope Ambiguity

 Ambiguity arises from adjectives or adverbs.

 Example:

―Old men and women were present.‖

o Are both men and women old? Or only the men?

F. Ellipsis / Missing Elements

 Some sentences omit words but are still understandable to humans.

 Example:

―I ordered pizza, and John [ordered] pasta.‖

o NLP must infer the missing verb.

Why These Dilemmas Matter in NLP

 Ambiguities cause parsing errors, which affect downstream tasks:

o Information Extraction → Misidentified entities or relations

o Machine Translation → Incorrect translations

o Question Answering → Wrong answers due to misinterpreted structure

 Handling these dilemmas often requires:

o Contextual information (e.g., surrounding sentences)

o Probabilistic models (like probabilistic CFGs)

o Deep learning approaches that learn likely structures

 Syntax in NLP

Syntax is the set of rules that governs how words are combined to form grammatically

correct sentences.

In NLP, syntax helps analyze the structure of a sentence, rather than just its words,

allowing systems to understand relationships between words.

Syntax = the structure of the sentence. Semantics = the meaning of the sentence.

Why Syntax is Important

Syntax is crucial in NLP because many tasks cannot rely solely on individual words.

Understanding sentence structure helps in:

1. Disambiguating Meaning
o Example (Attachment ambiguity):

―I saw the man with a telescope.‖

Syntax helps determine whether with a telescope refers to ―I‖ or ―the

man‖.

2. Information Extraction
o Helps extract structured knowledge like entities and relationships.

o Example:

―Elon Musk founded SpaceX.‖

Knowing subject-verb-object structure → (Elon Musk, founded,

SpaceX)

3. Machine Translation
o Accurate translation requires understanding sentence structure, not just

word-by-word translation.

4. Question Answering & Chatbots

o Understanding syntax helps identify who did what to whom.

o Example: ―Who founded SpaceX?‖

 Needs subject-verb-object parsing.

5. Summarization
o Syntax helps identify main clauses versus subordinate clauses to

summarize key information.

6. Grammar Checking
o Detect errors in writing using syntactic rules.

Syntax vs Semantics

Aspect Syntax Semantics

Focus Structure of sentence Meaning of sentence

Example ―The cat sat on the mat.‖ Understanding that a cat is sitting on a mat

Role in NLP Parsing, POS tagging, chunking NER, Relation Extraction, QA

How Syntax is Represented in NLP

1. Parse Trees
o Trees represent hierarchical structure of sentences.

o Example: Noun Phrases (NP), Verb Phrases (VP), Prepositional Phrases

(PP).

2. Context-Free Grammar (CFG)
o Defines rules for generating valid sentences (we’ll study this in next

topic).

3. Dependency Parsing
o Represents syntactic relationships as dependencies between words.

o Example: In ―Elon Musk founded SpaceX‖, founded → root, Elon Musk →

subject, SpaceX → object.

Context-Free Grammar (CFG)

Definition:
A Context-Free Grammar (CFG) is a set of rules used to generate all possible

sentences in a language.

It defines how words and phrases combine hierarchically to form valid sentences.

CFG is called ―context-free‖ because the rules apply regardless of surrounding words.

Components of a CFG

A CFG consists of four parts:

1. Terminals (Σ)
o The actual words in the language.

o Example: ―dog‖, ―barks‖, ―the‖, ―runs‖

2. Non-terminals (N)
o Syntactic categories or placeholders for phrases.

o Example: S (sentence), NP (noun phrase), VP (verb phrase), PP

(prepositional phrase)

3. Start Symbol (S)
o Represents a complete sentence. Parsing starts from this.

o Usually S is used.

4. Production Rules (P)
o Define how non-terminals can be expanded into other non-terminals or

terminals.

o Example:

How CFG Works (Example)

Goal: Generate the sentence → ―The cat sleeps‖

Grammar Rules:

Derivation:

This shows how a CFG generates a valid sentence step by step.

Why CFG is Useful in NLP

1. Parsing Sentences
o Helps build parse trees that represent the hierarchical structure of

sentences.

2. Syntax Analysis
o Ensures sentences follow grammatical rules.

o Detects errors or ambiguity.

3. Supports Downstream NLP Tasks
o Information Extraction – identify subjects, objects, relations

o Machine Translation – map structure to target language

o Question Answering – understand syntactic relations

4. Recursive Structures
o CFG naturally handles recursion, e.g., nested noun phrases or prepositional

phrases.

Example CFG Parse Tree

Sentence: ―The cat sat on the mat‖

Shows sentence structure with NP, VP, PP, DT, NN, VB.

Key Notes

 CFG is simpler than full natural language grammar but powerful enough for

many NLP tasks.

 Ambiguities still exist — multiple parse trees may be possible.

 Can be extended with probabilities → Probabilistic CFG (PCFG), which helps

choose the most likely parse.

What is Parsing?

Definition:
Parsing is the process of analyzing the syntactic structure of a sentence according to a

grammar (like CFG).

In NLP, parsing helps determine how words in a sentence are related and constructs a

parse tree showing hierarchical structure.

Why Parsing is Important

1. Understanding Sentence Structure
o Identifies subjects, verbs, objects, and modifiers.

2. Disambiguation
o Resolves structural ambiguity in sentences.

o Example: ―I saw the man with a telescope‖ → different parse trees for

different interpretations.

3. Supports Downstream NLP Tasks
o Information Extraction → identifies entities and relationships

o Machine Translation → maps structures between languages

o Question Answering → identifies what action involves which entity

How Parsing Works with CFG

Step 1: Start with the Start Symbol

 Typically S (sentence)

Step 2: Apply Production Rules

 Expand non-terminals (like NP, VP, PP) using CFG rules

Step 3: Match Terminals

 Continue expansions until all words in the sentence are matched

Step 4: Build Parse Tree

 Each expansion forms a node in the tree

 Leaf nodes are the actual words (terminals)

Example CFG

Grammar:

Sentence:

―The quick fox jumps over the dog‖

Parse Tree:

Types of Parsers

1. Top-Down Parsing
o Start from start symbol and try to generate the sentence.

o Checks if CFG rules can produce the sentence.

2. Bottom-Up Parsing
o Start from words in the sentence and try to combine them to form higher-

level phrases until reaching the start symbol.

3. Chart Parsing
o Efficient method storing partial parses in a chart to avoid redundant

computations.

4. Probabilistic Parsing (PCFG)
o Assigns probabilities to CFG rules

o Chooses the most likely parse tree in case of ambiguity

Parsing in NLP Tools (Example with NLTK)

This generates the parse tree, showing how the sentence is constructed from the CFG.

